首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. However, some of the recent policy literature has focused on dangerous climatic change (DCC) rather than on DAI. DAI is a set of increases in GHGs concentrations that has a non-negligible possibility of provoking changes in climate that in turn have a non-negligible possibility of causing unacceptable harm, including harm to one or more of ecosystems, food production systems, and sustainable socio-economic systems, whereas DCC is a change of climate that has actually occurred or is assumed to occur and that has a non-negligible possibility of causing unacceptable harm. If the goal of climate policy is to prevent DAI, then the determination of allowable GHG concentrations requires three inputs: the probability distribution function (pdf) for climate sensitivity, the pdf for the temperature change at which significant harm occurs, and the allowed probability (“risk”) of incurring harm previously deemed to be unacceptable. If the goal of climate policy is to prevent DCC, then one must know what the correct climate sensitivity is (along with the harm pdf and risk tolerance) in order to determine allowable GHG concentrations. DAI from elevated atmospheric CO2 also arises through its impact on ocean chemistry as the ocean absorbs CO2. The primary chemical impact is a reduction in the degree of supersaturation of ocean water with respect to calcium carbonate, the structural building material for coral and for calcareous phytoplankton at the base of the marine food chain. Here, the probability of significant harm (in particular, impacts violating the subsidiary conditions in Article 2 of the UNFCCC) is computed as a function of the ratio of total GHG radiative forcing to the radiative forcing for a CO2 doubling, using two alternative pdfs for climate sensitivity and three alternative pdfs for the harm temperature threshold. The allowable radiative forcing ratio depends on the probability of significant harm that is tolerated, and can be translated into allowable CO2 concentrations given some assumption concerning the future change in total non-CO2 GHG radiative forcing. If future non-CO2 GHG forcing is reduced to half of the present non-CO2 GHG forcing, then the allowable CO2 concentration is 290–430 ppmv for a 10% risk tolerance (depending on the chosen pdfs) and 300–500 ppmv for a 25% risk tolerance (assuming a pre-industrial CO2 concentration of 280 ppmv). For future non-CO2 GHG forcing frozen at the present value, and for a 10% risk threshold, the allowable CO2 concentration is 257–384 ppmv. The implications of these results are that (1) emissions of GHGs need to be reduced as quickly as possible, not in order to comply with the UNFCCC, but in order to minimize the extent and duration of non-compliance; (2) we do not have the luxury of trading off reductions in emissions of non-CO2 GHGs against smaller reductions in CO2 emissions, and (3) preparations should begin soon for the creation of negative CO2 emissions through the sequestration of biomass carbon.  相似文献   

2.
《Climate Policy》2013,13(4):465-480
Abstract

This paper aims at exploring options for differentiation of future commitments in global greenhouse gas emissions control, linked to climate targets. This is done on the basis of theEUtarget of a maximum global temperature increase of 2°C compared to pre-industrial levels. The Framework to Assess International Regimes for the differentiation of commitments (FAIR) is used to explore the implications of two possible climate regimes: (1) increasing participation (i.e. a gradual increase in the number of parties involved and their level of commitment according to participation and differentiation rules) and (2) ‘contraction and convergence’ (C&C) with universal participation and a convergence of per capita emission permits. It is found that in a regime of increasing participation, stabilising the CO2 concentration at 450 ppmv by 2100 requires participation of major developing countries before 2050 in global emission control, irrespective of the participation and differentiation rules chosen. In the case of stringent climate targets, a convergence regime seems to provide more incentives for a timely participation of developing countries, and opportunities for an effective and efficient regime for controlling global emissions than increasing participation.  相似文献   

3.
Strong and rapid greenhouse gas (GHG) emission reductions, far beyond those currently committed to, are required to meet the goals of the Paris Agreement. This allows no sector to maintain business as usual practices, while application of the precautionary principle requires avoiding a reliance on negative emission technologies. Animal to plant-sourced protein shifts offer substantial potential for GHG emission reductions. Unabated, the livestock sector could take between 37% and 49% of the GHG budget allowable under the 2°C and 1.5°C targets, respectively, by 2030. Inaction in the livestock sector would require substantial GHG reductions, far beyond what are planned or realistic, from other sectors. This outlook article outlines why animal to plant-sourced protein shifts should be taken up by the Conference of the Parties (COP), and how they could feature as part of countries’ mitigation commitments under their updated Nationally Determined Contributions (NDCs) to be adopted from 2020 onwards. The proposed framework includes an acknowledgment of ‘peak livestock’, followed by targets for large and rapid reductions in livestock numbers based on a combined ‘worst first’ and ‘best available food’ approach. Adequate support, including climate finance, is needed to facilitate countries in implementing animal to plant-sourced protein shifts.

Key policy insights

  • Given the livestock sector’s significant contribution to global GHG emissions and methane dominance, animal to plant protein shifts make a necessary contribution to meeting the Paris temperature goals and reducing warming in the short term, while providing a suite of co-benefits.

  • Without action, the livestock sector could take between 37% and 49% of the GHG budget allowable under the 2°C and 1.5°C targets, respectively, by 2030.

  • Failure to implement animal to plant protein shifts increases the risk of exceeding temperate goals; requires additional GHG reductions from other sectors; and increases reliance on negative emissions technologies.

  • COP 24 is an opportunity to bring animal to plant protein shifts to the climate mitigation table.

  • Revised NDCs from 2020 should include animal to plant protein shifts, starting with a declaration of ‘peak livestock’, followed by a ‘worst first’ replacement approach, guided by ‘best available food’.

  相似文献   

4.
As part of the Copenhagen Accord, Annex I Parties (industrialised countries) and non-Annex I Parties (developing countries) have submitted reduction proposals (pledges) and mitigation actions to the UNFCCC secretariat. Our calculations show that if the current reduction offers of Annex I and non-Annex I countries are fully implemented, global greenhouse gas emissions could amount to 48.6-49.7 GtCO2eq by 2020. Recent literature suggests that the emission level should be between 42 and 46 GtCO2eq by 2020 to maintain a “medium” chance (50-66%) of meeting the 2 °C target. The emission gap is therefore 2.6-7.7 GtCO2eq. We have identified a combined set of options, which could result in an additional 2.8 GtCO2eq emission reduction. This would lead to an emission level just within the range needed. The options include reducing deforestation and emissions from bunker fuels, excluding emissions allowance increases from land use and forestry rules, and taking into account the national climate plans of China and India. However, there are also important risks that could widen the emissions gap, like lower reductions from countries with only a conditional pledge and the use of Kyoto and/or trading of new surplus emission allowances.  相似文献   

5.
在应对气候变化问题上,发达国家有率先减排和为发展中国家提供气候资金支持的义务。根据《联合国气候变化框架公约》相关成果,发达国家做出了到2020年减排温室气体和每年动员1000亿美元气候资金的承诺,综合相关数据信息盘点了上述承诺的实施进展,结果显示发达国家2020年减排目标力度不足,核算规则不清晰,部分国家缺乏减排进展,气候资金的概念和范围尚有争议,现有气候资金规模与承诺仍有较大差距,《联合国气候变化框架公约》下资金机制作用仍待加强,并且发展中国家需要更大规模的气候资金支持。发达国家2020年承诺兑现不力不利于巩固多边进程各方互信,且有向发展中国家转嫁责任之嫌。为此,建议中国在国际气候谈判进程中,依托谈判联盟,进一步敦促发达国家履行2020年承诺并提高力度。  相似文献   

6.
During the negotiations on the Kyoto Protocol, Brazil proposed allocating the greenhouse gas emission reductions of Annex I Parties according to the relative effect of a country’s historical emissions on global temperature increase. This paper analyses the impact of scientific uncertainties and of different options in policy implementation (policy choices) on the contribution of countries’ historical emissions to indicators of historical responsibility for climate change. The influence of policy choices was found to be at least as large as the impact of the scientific uncertainties analysed here. Building on this, the paper then proceeds to explore the implications of applying the Brazilian Proposal as a climate regime for differentiation of future commitments on the global scale combined with an income threshold for participation of the non-Annex I regions. Under stringent climate targets, such a regime leads to high emission reductions for Annex I regions by 2050, in particular for Europe and Japan. The income threshold assumptions strongly affect the Annex I reductions, even more than the impact of another burden-sharing key. A variant of the Brazilian Proposal, allocating emission reductions on the basis of cumulative emissions since 1990, would lead to a more balanced distribution of emission reductions.  相似文献   

7.
International negotiations under the UN Framework Convention on Climate Change could take several different approaches to advance future mitigation commitments. Options range from trying to reach consensus on specific long-term atmospheric concentration targets (e.g. 550 ppmv) to simply ignoring this contentious issue and focusing instead on what can be done in the nearer term. This paper argues for a strategy that lies between these two extremes. Internationally agreed threshold levels for certain categories of impacts or of risks posed by climate change could be translated into acceptable levels of atmospheric concentrations. This could help to establish a range of upper limits for global emissions in the medium term that could set the ambition level for negotiations on expanded GHG mitigation commitments. The paper thus considers how physical and socio-economic indicators of climate change impacts might be used to guide the setting of such targets. In an effort to explore the feasibility and implications of low levels of stabilisation, it also quantifies an intermediate global emission target for 2020 that keeps open the option to stabilise at 450 ppmv CO2 If new efforts to reduce emissions are not forthcoming (e.g. the Kyoto Protocol or similar mitigation efforts fail), there is a significant chance that the option of 450 ppmv CO2 is out of reach as of 2020. Regardless of the preferred approach to shaping new international commitments on climate change, progress will require improved information on the avoided impacts climate change at different levels of mitigation and careful assessment of mitigation costs.  相似文献   

8.
Abstract

New Labour came to power in 1997 pledging to put environment concerns at the heart of policy-making. Shortly after being elected, the Labour Government signed the Kyoto Protocol and adopted a voluntary domestic target of a 20% cut in carbon dioxide emissions by 2010. This article looks at the development of UK climate policy since 1997 and the political drivers that have led to development of the climate policy mix. It assesses the Climate Change Programme adopted in 2000 and its delivery, and it also looks at the 5-year Climate Change Programme Review published in March 2006. It conducts a quantitative assessment of the UK's performance by looking at emissions data, and it also provides a qualitative analysis, by looking at the UK policies and measures within their political and institutional context. The article concludes that Labour has been actively promoting climate policy since coming to power and has played a strong leadership role internationally. The UK is on track to meet and surpass its Kyoto target, meeting its international commitments. Between 24.1 and 29.1 million tonnes of carbon savings per year are expected by 2010. Policies and measures in the industrial sector are delivering real emissions reductions, in addition to the reductions made through fuel switching. The Government has found it more difficult to make some of the tough choices necessary to deliver emissions reductions in the transport and the household sectors. The article seeks to explain why the Labour Government has found it uncomfortable, politically, to implement stronger measures in these parts of the economy. The article highlights the changing dynamics within UK politics and concludes that there are two possible avenues for taking more stringent measures in the future. The first involves the development of a cross-party consensus on climate change. The second is to change the way that climate change is framed, so that it is no longer seen as an ‘environment’ issue but one with which voters and decision-makers can immediately connect. Only then will it be possible to implement the necessary policies and measures across the whole economy.  相似文献   

9.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

10.
Substantially postponing the emission reductions, compared to the ranges indicated in IPCC’s recent assessment for 2020 as required for meeting the longterm 2°C target, increases the risk of exceeding this target. The costs of a delay strategy are lower in the short term, but leads to higher costs in the longer term. The analysis shows if the emission reductions are postponed to 2030 it is not likely that higher emissions from the earlier years can be fully compensated in future decades in a so-called ‘delayed action scenario’. A full compensation would require emission reduction rates in the coming decades that are much higher than those found in the scenario literature. Without compensation, the risk of exceeding the global temperature rise target of 2°C will increase. This confirms that it is not only the reduction commitments for 2050 that determine the risk of exceeding the 2°C target, but also the path between now and 2050. To meet this 2°C target, more ambitious 2020 reduction targets are needed for the developed and developing countries than those that have been pledged so far.  相似文献   

11.
This article provides further detail on expected global GHG emission levels in 2020, based on the Emissions Gap Report (United Nations Environment Programme, December 2010), assuming the emission reduction proposals in the Copenhagen Accord and Cancun Agreements are met. Large differences are found in the results of individual groups owing to uncertainties in current and projected emission estimates and in the interpretation of the reduction proposals. Regardless of these uncertainties, the pledges for 2020 are expected to deliver emission levels above those that are consistent with a 2°C limit. This emissions gap could be narrowed through implementing the more stringent conditional pledges, minimizing the use of ‘lenient’ credits from forests and surplus emission units, avoiding double-counting of offsets and implementing measures beyond current pledges. Conversely, emission reduction gains from countries moving from their low to high ambition pledges could be more than offset by the use of ‘lenient’ land use, land-use change and forestry (LULUCF) credits and surplus emissions units, if these were used to the maximum. Laying the groundwork for faster emission reduction rates after 2020 appears to be crucial in any case.  相似文献   

12.
For decades Norwegian climate policy has largely ignored the agricultural sector and focused on cost-effective emission reductions abroad. Yet in June 2020, Norway decided to ban the cultivation of peatlands to protect critical carbon sinks, and the issue became ‘high politics’. We explain this radical policy change by combining an adapted version of the Multiple Streams framework with the Punctuated Equilibrium model of agenda-setting. We argue that the two models combined can provide a holistic explanatory framework, albeit with two revisions. Firstly, the window of opportunity or punctuation was in our case of a longer duration than both models anticipate. Secondly, we find that multiple complete couplings can take place within the opening of a policy (or more specifically, a decision) window. Both findings can be explained by party competition, thus underlining the need to revise agenda-setting models to better account for party politics.  相似文献   

13.
If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential conflicts between current free trade regimes and motivated industrial policies for deep decarbonization must be resolved. One way forward is to revisit the idea of sectoral approaches with a broader scope, including not only emission reductions, but recognizing the full complexity of low-carbon transitions in energy-intensive industries. A new approach could engage industrial stakeholders, support technology research, development and demonstration and facilitate deployment through reducing the risk for investors. The Paris Agreement allows the idea of sectoral approaches to be revisited in the interests of reaching our common climate goals.

Policy relevance

Deep decarbonization of energy-intensive industries will be necessary to meet the 2 °C target. This requires major innovation efforts over a long period. Energy-intensive industries face unique challenges from both innovation and technical perspectives due to the large scale of facilities, the character of their global markets and the potentially high mitigation costs. This article addresses these challenges and discusses ways in which the global climate policy framework should be developed after the Paris Agreement to better support transformative change in the energy-intensive industries.  相似文献   

14.
This paper investigates the potential impacts of alternative international climate change scenarios based on different policies and technological circumstances on future emission pathways and abatement costs. It also examines if these hypothetical scenarios could result in significant emission reductions required to control the global temperature from rising to no more than 2.5 °C above preindustrial level. Using an integrated assessment model, this paper examines these issues under 12 scenarios derived from four policy perspectives and three technology dimensions. Results show that the no-policy-change baseline scenarios lead to high global average temperatures in the future. To control the temperature efficiently, every global region will be required to undertake considerable abatement efforts. Current country pledges alone, even if fully implemented, cannot control the global temperature in the future to within a comfortable zone. There will still be large gap between the reductions needed to meet the 2.5 degree objective, associated with 550 ppm and the reductions associated with existing abatement efforts. Further stringent policies together with favourable technological conditions may lead to the desired level of temperature control. Participation by only a subset of nations not only makes achieving the temperature goal difficult but also costly. To achieve temperature control efficiently, global coordination and full participation by all regions are necessary and global participation may reduce global abatement costs. It is worth noting that abatement costs vary widely across regions under different policy and technology scenarios.  相似文献   

15.
Scenarios are used to explore the consequences of different adaptation and mitigation strategies under uncertainty. In this paper, two scenarios are used to explore developments with (1) no mitigation leading to an increase of global mean temperature of 4 °C by 2100 and (2) an ambitious mitigation strategy leading to 2 °C increase by 2100. For the second scenario, uncertainties in the climate system imply that a global mean temperature increase of 3 °C or more cannot be ruled out. Our analysis shows that, in many cases, adaptation and mitigation are not trade-offs but supplements. For example, the number of people exposed to increased water resource stress due to climate change can be substantially reduced in the mitigation scenario, but adaptation will still be required for the remaining large numbers of people exposed to increased stress. Another example is sea level rise, for which, from a global and purely monetary perspective, adaptation (up to 2100) seems more effective than mitigation. From the perspective of poorer and small island countries, however, stringent mitigation is necessary to keep risks at manageable levels. For agriculture, only a scenario based on a combination of adaptation and mitigation is able to avoid serious climate change impacts.  相似文献   

16.
《Climate Policy》2013,13(5):494-515
A sectoral approach to GHG emissions reductions in developing countries is proposed as a key component of the post-2012 climate change mitigation framework. In this approach, the ten highest-emitting developing countries in the electricity and other major industrial sectors pledge to meet voluntary, ‘no-lose’ GHG emissions targets in these sectors. No penalties are incurred for failing to meet a target, but emissions reductions achieved beyond the target level earn emissions reduction credits (ERCs) that can be sold to industrialized nations. Participating developing countries establish initial ‘no-lose’ emissions targets, based upon their national circumstances, from sector-specific energyintensity benchmarks that have been developed by independent experts. Industrialized nations then offer incentives for the developing countries to adopt more stringent emissions targets through a ‘Technology Finance and Assistance Package’, which helps to overcome financial and other barriers to technology transfer and deployment. These sectorspecific energy-intensity benchmarks could also serve as a means for establishing national economy-wide targets in developed countries in the post-2012 regime. Preliminary modelling of a hybrid scenario, in which Annex I countries adopt economy-wide absolute GHG emissions targets and high-emitting developing countries adopt ‘no-lose’ sectoral targets, indicates that such an approach significantly improves the likelihood that atmospheric concentrations of CO2 can be stabilized at 450 ppmv by the end of the century.  相似文献   

17.
The relationship between long-term climate goals and short/medium-term emission targets forms crucial information for the design of international climate policy. Since IPCC??s 4th Assessment Report (AR4), a large number of new scenario studies have been published. This paper reviews this new literature and finds that there is more flexibility in the timing of short-term emission reductions compared to the earlier scenarios assessed by the AR4. For instance, the current literature suggests that a peak of emissions in 2020 and even 2030 would be consistent with limiting temperature change to about 2??C in the long term. The timing when emissions peak depends on whether negative emissions in the long-term can be achieved. The recent scenarios further indicate that global emissions by 2050 should be 40?C80% below 2000 levels. Above all, the paper argues that there is no clear, single ??law?? that would directly determine the required emissions levels in 2020, but that instead policy-makers need to consider trade-offs between the likelihood of achieving long-term targets, the short-term costs, and their expectation with respect to future technologies (and their possible failure). The higher flexibility might be important in finding acceptable agreements on international climate policy.  相似文献   

18.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

19.
We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.  相似文献   

20.
《Climate Policy》2013,13(3):247-260
In order to stabilize long-term greenhouse gas concentrations at 450 ppm CO2-eq or lower, developed countries as a group should reduce emissions by 25–40% below 1990 levels by 2020, while developing countries' emissions need to be reduced by around 15–30%, relative to their baseline levels, according to the IPCC and our earlier work. This study examines 19 other studies on the emission reductions attributed to the developed and developing countries for meeting a 450 ppm target. These studies considered different allocation approaches, according to equity principles. The effect of the assumed global emissions cap in these studies is analysed. For developed countries, the original reduction range of 25–40% by 2020 is still within the average range of all studies, but does not cover it completely. Comparing the studies shows that assuming a global emissions cap of 5–15% above 1990 levels by 2020 generally leads to more stringent reduction targets than when a global emissions cap of 20–30% above 1990 levels is assumed. For developing countries, the reduction range of 15–30% below their baseline levels by 2020 corresponds to an increase on the 1990 level from 70% (about the 2006 level) to 120%. Reducing deforestation emissions by 50% below baseline levels by 2020 may relax the emission reductions for either group of countries; for developing countries by about 7% or for developed countries by about 15% (but not for both).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号