首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

2.
Suspended sediment dynamics and morphodynamics in the Yellow River, China   总被引:2,自引:0,他引:2  
The Yellow River in China carries large amounts of sediments in suspension at concentrations up to several hundreds of kilograms per cubic metre; the sediment is composed mainly of silt. These high sediment concentrations influence the hydrodynamics (flow velocity and turbulence) which, in turn, determine the sediment concentration profile, whereas both the high sediment concentrations and pseudo-cohesive properties of silt determine the morphodynamics of the Yellow River. The effect of sediment on the hydrodynamics is analysed using the Richardson number and the Reynolds number to provide a framework to differentiate between various flow regimes in the Yellow River, which is calibrated and validated with Yellow River data. The flow may be sub-saturated (stable flow), super-saturated (unstable flow characterized by high deposition rates, caused by collapse of turbulence), or hyperconcentrated sub-saturated (stable flow because of hindered settling effects), depending on the Richardson number. Independent of this, the flow may be turbulent, transitional or laminar, depending on the Reynolds number. Analysis of these flow types improves understanding of the flow regimes and morphodynamics of the Yellow River. The morphodynamics of the Yellow River are also affected by pseudo-cohesive behaviour caused by shear dilatance, which results in increasing critical shear stress for erosion at decreasing grain-size. This pseudo-cohesive behaviour may be partly responsible not only for the high deposition rates which characterize the lower Yellow River, but also for mass erosion during river floods.  相似文献   

3.
This study of fluvial terraces of the River Rhine and tributaries aims to search for indications of Pleistocene tectonic activity. The study area includes the northern Upper Rhine Graben (URG), the Mainz Basin and the adjacent Rhenish Massif with the Middle Rhine Valley. High rates of Quaternary surface processes, large amount of human modifications, relatively slow tectonic deformation and presently low intra-plate seismic activity characterize this area. Therefore, the records of relatively slow tectonic deformation are less well preserved and thus difficult to detect. This study uses the relative position of fluvial terraces to determine the more local effects of fault movements on the terraces and to evaluate their displacement rates and patterns. The research is based on a review of previous terrace studies and new terrace mapping from the eastern Mainz Basin and the bordering URG using topographic map interpretations and field observations. This newly mapped sequence of terrace surfaces can be correlated to other terraces in the vicinity on the basis of relative height levels. Terrace correlation between the western Mainz Basin and Middle Rhine Valley relies on a single chronostratigraphic unit (Mosbach sands) and additional relative height correlations. This is the first study to present a continuous correlation of terraces from the western margin of the URG to the Rhenish Massif and enables the study of the transition from the subsiding graben to the uplifted Rhenish Massif. By means of a longitudinal profile, which ranges from the URG to the Rhenish Massif, the influence of individual fault movements on the terrace levels and the large-scale regional uplift is demonstrated. It is evident from the profile that the uplift of Early to Middle Pleistocene terraces increases northwards, towards the Rhenish Massif. The uplift was diachronic, with a significant pulse occurring first in the northern URG (Lower Pleistocene) and later in the Rhenish Massif (Middle Pleistocene). The largest vertical displacements are recorded for the boundary fault separating the Mainz Basin and the Rhenish Massif (Hunsrück–Taunus Boundary Fault) and for faults bounding the northeastern Mainz Basin. The motions and displacement rates calculated for individual faults indicate deformation rates in the order of 0.01–0.08 mm/year. At this stage, the calculation of displacement rates depends mostly on a single dated stratigraphic unit. Additional dating of terrace deposits is urgently needed to better constrain the temporal development of the terrace sequence and the impact of tectonic movements.  相似文献   

4.
Abstract The branches of the River Rhine in the Netherlands, characterized by a sand–gravel bed in the upstream part and a sand bed in the downstream part of the river system, show migrating dunes, especially during floods. In the last 20 years, these dunes have been studied extensively. High-resolution echo-sounding measurements of these dunes, made with single and multibeam equipment, were analysed for three different sections of the Rhine river system during several floods. This analysis was done to quantify the growth, decay and migration rates of the dunes during floods. In addition, the migrating dunes were used to calculate bedload transport rates with dune tracking. The results of dune growth and decay and migration rate are shown to be very different for the various sections during the various floods, and these differences are related to differences in grain size of the bed and to differences in the distribution of discharge over the main channel and the floodplain. The relations are used to show that the growth and migration rate of dunes, and the calculated bedload transport rates during the rising stage of a flood wave can be predicted from the mobility of the bed material with simple power relations.  相似文献   

5.
黄河下游输沙水量研究综述   总被引:11,自引:2,他引:11       下载免费PDF全文
石伟  王光谦 《水科学进展》2003,14(1):118-123
对输沙水量的计算方法,黄河下游汛期、非汛期输沙水量的研究现状,水库对输沙水量的影响,输沙用水总量的研究现状等方面分别作了回顾。分析指出,输沙水量与来水含沙量、来水流量、河道冲淤、河床前期条件等有关。黄河下游各时期输沙水量不同,汛期最小,其余依次为非汛期、冬三月、凌汛期。水库调水调沙的同时也改变着黄河下游的输沙水量。利用水库群调水调沙,使小浪底水库以造床流量、高含沙水流输沙,是目前推荐的黄河下游节水减淤高效输沙入海的主要方式。提出了一些有待进一步研究的问题。  相似文献   

6.
黄河下游洪水的泥沙输移特征   总被引:8,自引:1,他引:8       下载免费PDF全文
许炯心 《水科学进展》2002,13(5):562-568
研究了黄河下游1950-1960年、1969-1985年144次洪水的泥沙输移特征.结果表明:泥沙输移比(SDR)随场次洪水平均含沙量和平均来沙系数的增大而迅速减小;存在着一个使泥沙的输移比达到最大值的最优洪水流量级(4000m3/s左右);场次洪水泥沙输移比与场次洪水最大含沙量之间存在着负相关,当最大含沙量(Cmax)>300kg/m3时,泥沙输移比(SDR)<0.50,说明高含沙洪水的输移比是很低的.上中游不同源区的洪水对下游的SDR有显著的差异.来自河口镇以上清水区洪水的SDR大多数大于0.60;来自多沙细沙区洪水的SDR都大于0.50;来自多沙粗沙区洪水的SDR则小于0.50.黄河下游SDR与来自不同来源区洪水的搭配关系有关,SDR随来自粗泥沙区来沙量比例的增大而增大,达到一个峰值,与之相对应的粗泥沙区沙量百分比为50%;对于细泥沙区来沙量比例而言,情形类似,与SDR峰值相对应的细泥沙区来沙量百分比为40%.  相似文献   

7.

近年来,石英ESR信号强度在风成沉积和河流沉积中都已被证明为一种行之有效的物源示踪指标。文章以长江流域干流不同河段及其主要支流为研究对象,共采集20个现代河流沉积物样品,对其粒度组成特征及其石英自然E'1心,辐照5000 Gy的Al心、Ti心的ESR信号强度空间分布特征及其物源示踪意义进行了探讨,主要取得了以下初步认识:1)长江流域沉积物从上游地区到中下游地区经历了长时间、长距离的搬运,经过了充分的混合,且呈现"沿程细化"之趋势;本研究的长江流域干流河段及其主要支流(河漫滩及江心洲)的沉积物主要以125~500 μm的粒径组分为主,约占全样组分的60%~90%(平均为80%)。2)从上游河段到中下游河段,长江主要支流和干流不同河段沉积物石英自然E'1心,辐照后的Al心和Ti心ESR信号强度都表现出了较好的空间分异性,即上游河段处于低端元值域而下游河段处于高端元值域。3)长江上游地区以及汉江是长江中下游干流沉积物的主要贡献者,而中下游地区的鄱阳湖水系和洞庭湖水系对长江干流物质的贡献度非常低。

  相似文献   

8.
The Niers valley was part of the Rhine system that came into existence during the maximum Saalian glaciation and was abandoned at the end of the Weichselian. The aim of the study was to explain the Late Pleniglacial and Late Glacial fluvial dynamics and to explore the external forcing factors: climate change, tectonics and sea level. The sedimentary units have been investigated by large‐scale coring transects and detailed cross‐sections over abandoned channels. The temporal fluvial development has been reconstructed by means of geomorphological relationships, pollen analysis and 14C dating. The Niers‐Rhine experienced a channel pattern change from braided, via a transformational phase, to meandering in the early Late Glacial. This change in fluvial style is explained by climate amelioration at the Late Pleniglacial to Late Glacial transition (at ca. 12.5 k 14C yr BP) and climate‐related hydrological, lithological and vegetation changes. A delayed fluvial response of ca. 400 14C yr (transitional phase) was established. The channel transformations are not related to tectonic effects and sea‐level changes. Successive river systems have similar gradients of ca. 35–40 cm km?1. A meandering river system dominated the Allerød and Younger Dryas periods. The threshold towards braiding was not crossed during the Younger Dryas, but increased aeolian activity has been observed on the Younger Dryas point bars. The final abandonment of the Niers‐Rhine was dated shortly after the Younger Dryas to Holocene transition. Traces of Laacher See pumice have been found in the Niers valley, indicating that the Niers‐Rhine was still in use during the Younger Dryas. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate.  相似文献   

10.
黄河下游非恒定输沙数学模型——Ⅱ模型验证   总被引:9,自引:1,他引:9       下载免费PDF全文
利用所构建的非恒定输沙数学模型,对黄河下游铁谢至孙口河段内的1977年高含沙洪水、1982年大水少沙型洪水以及1996年典型洪水进行了数值模拟.模拟结果证明了数学模型的可靠性,表明该模型不仅能模拟黄河下游河道一般洪水和高含沙洪水的水沙传播、水位变化及河床变形等,而且对模拟现行严重萎缩河道内的洪水演进及河床冲淤特性也有较好的适应性.  相似文献   

11.
构建起具有通用性的黄河下游一维非恒定输沙数学模型.该模型建立了新的泥沙连续性方程与河床变形方程,克服了以往数学模型计算中取饱和恢复系数小于1等缺陷,引入了符合黄河下游河道水沙特点的水流挟沙力和河床糙率计算等公式,给出了悬移质含沙量以及悬移质泥沙平均粒径沿横向分布的计算方法,以及阐明了河槽在冲淤过程中河宽变化规律的模拟技术.运用Preissmann四点差分格式离散水流方程,并与泥沙连续性方程进行非耦合求解.  相似文献   

12.
The northern Upper Rhine Graben, situated in the central part of the European Cenozoic rift system, is currently characterized by low intra-plate seismicity. Historical earthquakes have not been large enough to produce surface rupturing. Moreover, the records of Quaternary surface processes and human modifications are presumably better preserved than the record of the relatively slow tectonic deformation.In order to gain information on the neotectonic activity and paleoseismicity in this setting, the geological and geomorphological records of fault movements along a segment of the Western Border Fault (WBF) were studied using an integration of techniques in paleoseismology, structural analysis and shallow geophysics. The WBF segment investigated follows a 20 km long linear scarp of unclear origin. A series of geophysical measurements were performed and the results suggested that near-surface deformation structures are present at the segments' southern end. Several trenches opened at this location revealed fault structures with consistent extensional style and a maximum vertical displacement of 0.5 m. In one trench, the deformation structures were dated between 19 and 8 ka. Assuming the deformation has been caused by an earthquake, a Mw 6.5 earthquake would be implied. Aseismic deformation would point to a fault creep rate ≥ 0.04 mm/yr.A reconstruction of the sequence of events at the trench site, from Middle Pleistocene to Present, demonstrates that the morphology at the base of the scarp is the result of interplay between tectonic activity and fluvial and erosional processes. At the regional scale, a mixed origin for the WBF scarp is proposed, combining the effects of fluvial dynamics, erosion, regional uplift and localized tectonic activity on the WBF.  相似文献   

13.
In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is ‘grain-size regulated’. Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now approximately equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the bed of the channel (driven by changes in the upstream supply of sand owing to both tributary floods and high dam releases) are important in regulating sand transport over timescales of days to months. In this study, suspended-sand data are analysed in conjunction with bed grain-size data to determine whether changes in the grain size of sand on the bed of the channel or changes in the grain size of sand on the surface of eddy sandbars have been more important in regulating sand transport in the post-dam Colorado River over longer, multi-year timescales. The results of this study show that this combined theory- and field-based approach can be used to deduce which environments in a complicated setting are the most important environments for regulating sediment transport. In the case of the regulated Colorado River in Marble and Upper Grand Canyons, suspended-sand transport has been regulated mostly by changes in the surface grain size of eddy sandbars.  相似文献   

14.
黄河下游河道边界条件影响输沙效率研究述评   总被引:1,自引:0,他引:1       下载免费PDF全文
如何高效输沙始终是黄河下游河道治理的一个根本问题,其中河道边界条件对泥沙输送具有重要的影响,这源于两者之间存在的耦合作用。对现有河道边界条件影响输沙效率相关研究进展及存在的问题进行了系统的总结与分析。河道边界条件不仅影响河道空间沿程输沙效率,而且河道边界条件的演化还决定了输沙效率的时间调整过程。这种影响在不同输沙计算方法(水文学方法、水动力学方法)中的表现形式有所不同,但反映物理本质相同,彼此之间存在一定的联系。能否反映水沙运动与河床变形之间的相互作用及耦合特性,这是判断输沙模拟有效性的关键所在。河道输沙与河床变形作为泥沙赋存状态同一问题的两个方面,提出了从河床演变学角度研究输沙效率的问题,为相关研究的开展提供思路与参考。  相似文献   

15.
Settling velocities of suspended cohesive sediment in estuaries vary over a range of several orders in magnitude. Variations in the suspended sediment concentration are often considered as the principal cause. Turbulence and the suspended sediment concentration, as well as other factors such as salinity, dissolved organic substances, flocculation ability, and the rate of floc growth affect setting velocities. A laterally–averaged finite difference model for hydrodynamics and cohesive sediment transport is developed and applied in the Tanshui River estuary, Taiwan. The model has been calibrated and verified with water surface elevation, longitudinal velocity, salinity, and cohesive sediment measured. The overall performance of the model is in qualitative agreement with the available data. The model is used to investigate the influence of settling velocity on cohesive sediment transport dynamics. The simulation indicates that the turbidity maximum zone is near Kuan–Du. When settling velocities increase the surface cohesive sediment concentration at Kuan–Du station trends to decrease and bottom cohesive sediment concentration increases. Both surface and bottom cohesive sediment concentrations decrease at Taipei Bridge and Pa–Ling Bridge. This implies that suspended sediment advected seaward and deposited. There is consequently a net seaward flux of suspended sediment near surface, and a net landward flux near the bed.  相似文献   

16.
河道采砂可对河道的稳定性、航运安全、生态环境等造成重要影响。河道采砂可能会增加河流的输沙,也可能会减少河流的输沙。长江中下游河道的采砂量虽然很大,但却不是导致入海泥沙减少的主要原因,由河道采砂引起的河流输沙减少的相应比例应该不到采砂量的10%。汉口站和湖口站的来沙减少是造成大通站输沙减少的最主要原因。  相似文献   

17.
三门峡库区一维非恒定非均匀泥沙输移数学模型   总被引:1,自引:1,他引:1       下载免费PDF全文
黄河是高含沙河流,含沙量季节差异显著。因此研究黄河干流的非恒定水沙输移规律以及库区泥沙的淤积问题极为重要。应用圣维南方程组以及非恒定泥沙连续方程建立了非恒定非均匀泥沙含沙量计算公式,并根据沙量平衡方程推求出三门峡库区河底高程的变化规律。使用已有的资料对模型进行的验证表明:模型计算与实测资料符合良好,该模型具有较好的应用前景。  相似文献   

18.
基于2001-2015年长江口系列的水下地形和水文测验等资料,研究了流域减沙对长江口典型河槽及邻近海域演变的影响。结果表明:三峡工程建成后的近10多年,流域年均输沙量处于1.35亿t左右的较低水平。受其影响,长江口口内的南支、南港和北港上段的含沙量2008年之后明显下降,河槽冲刷、容积扩大,河槽形态向相对窄深方向演化。而拦门沙河槽的上游侧和口外侧近年来亦有所冲刷,拦门沙浅滩长度缩短。长江口水下三角洲前沿位于北港口外和南北槽口外有两个冲刷区,2007年之后年平均冲刷厚度达0.1 m左右,年侵蚀沙量达0.71亿m3。流域减沙对长江口河槽演变的影响尚在进行中,可能改变长江口水下三角洲向海淤涨的历史演变模式。  相似文献   

19.
雅鲁藏布江(雅江)水系发育和河流地貌演变受新构造运动的强烈影响。通过野外调查,结合SRTM(航天飞机雷达地形测绘使命)数据分析和Google Earth三维地图功能,对雅江河网形态及河流地貌特征进行了分析,并采用EH4电磁成像系统测量了雅江及其支流宽谷河道淤沙深度。研究发现,雅江河网呈现格状水系特点,同时具有枝状河网的拓扑性质,这主要是由于新构造运动的影响,河网发育过程中受到南北向挤压和东西向拉伸所至。青藏高原阶段性不均匀抬升形成了宽窄相间的藕节状河道形态,宽阔河段河道为辫状河型,而窄深河段为深切的V型河谷、单一顺直河型,纵剖面上构成裂点。裂点河段地块相对上升较快,阻滞了水流和泥沙,上游河段大量卵石和泥沙在河谷里淤积深达800多米,形成了平整而宽阔的U型河谷。整个雅江宽谷段泥沙淤积量约0.9万亿m3。  相似文献   

20.
黄河下游河道输沙水量及计算方法研究   总被引:15,自引:0,他引:15       下载免费PDF全文
根据黄河下游1950年以来的水沙、河道冲淤及洪水观测资料,系统分析了黄河下游主要控制站输沙水量与来沙量、洪水量级、水沙搭配、区间引水引沙及河道允许淤积度等因子间的相互关系。在探讨泥沙输移规律和机理的基础上,引入水沙搭配参数,建立了适用于黄河下游主要控制站汛期及洪水期计算输沙水量的数学表达式,量化了水沙条件及河道允许淤积度变化对河道输沙水量的影响程度。该研究对维持黄河健康生命及黄河水资源的规划利用具有重要的理论和实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号