首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

2.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

3.
Preliminary results are reported from an experimental study of the interaction between turbulence, sediment transport and bedform dynamics over the transition from dunes to upper stage plane beds. Over the transition, typical dunes changed to humpback dunes (mean velocity 0–8 ms-1, depth 01 m, mean grain size 0.3 mm) to nominally plane beds with low relief bed waves up to a few mm high. All bedforms had a mean length of 0.7–0.8 m. Hot film anemometry and flow visualization clearly show that horizontal and vertical turbulent motions in dune troughs decrease progressively through the transition while horizontal turbulence intensities increase near the bed on dune backs through to a plane bed. Average bedload and suspended load concentrations increase progressively over the transition, and the near-bed transport rate immediately downstream of flow reattachment increases markedly relative to that near dune crests. This relative increase in sediment transport near reattachment appears to be due to suppression of upward directed turbulence by increased sediment concentration, such that velocity close to the bed can increase more quickly downstream of reattachment. Low-relief bedwaves on upper-stage plane beds are ubiquitous and give rise to laterally extensive, mm-thick planar laminae; however, within such laminae are laminae of more limited lateral extent and thickness, related to the turbulent bursting process over the downstream depositional surface of the bedwaves.  相似文献   

4.
Current understanding of bedform dynamics is largely based on field and laboratory observations of bedforms in steady flow environments. There are relatively few investigations of bedforms in flows dominated by unsteadiness associated with rapidly changing flows or tides. As a consequence, the ability to predict bedform response to variable flow is rudimentary. Using high‐resolution multibeam bathymetric data, this study explores the dynamics of a dune field developed by tidally modulated, fluvially dominated flow in the Fraser River Estuary, British Columbia, Canada. The dunes were dominantly low lee angle features characteristic of large, deep river channels. Data were collected over a field ca 1·0 km long and 0·5 km wide through a complete diurnal tidal cycle during the rising limb of the hydrograph immediately prior to peak freshet, yielding the most comprehensive characterization of low‐angle dunes ever reported. The data show that bedform height and lee angle slope respond to variable flow by declining as the tide ebbs, then increasing as the tide rises and the flow velocities decrease. Bedform lengths do not appear to respond to the changes in velocity caused by the tides. Changes in the bedform height and lee angle have a counterclockwise hysteresis with mean flow velocity, indicating that changes in the bedform geometry lag changes in the flow. The data reveal that lee angle slope responds directly to suspended sediment concentration, supporting previous speculation that low‐angle dune morphology is maintained by erosion of the dune stoss and crest at high flow, and deposition of that material in the dune trough.  相似文献   

5.
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate.  相似文献   

6.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

7.
Current knowledge of flow and turbulent processes acting across the sand bed continuum is still unable to unequivocally explain the mechanism(s) by which ripples become dunes. Understanding has been improved by comparative high-resolution studies undertaken over fixed bedforms at different stages in the continuum. However, these studies both ignore the role of mobile sediment and do not examine flow structure during the actual transition from ripples to dunes. The aims of the paper are: (i) to describe flow and turbulence characteristics acting above mobile bedforms at several stages across the transition; and (ii) to compare these data with those arising from experiments over fixed ripples and dunes. Laboratory experiments are presented that examine the turbulence structure across seven distinct stages of the transition from ripples to dunes. Single-point acoustic Doppler velocimeter sampling at three flow heights above a developing mobile boundary was undertaken. Time-averaged statistics and the instantaneous quadrant record reveal distinct changes in flow structure either side of the change from ripples to dunes. Initially, shear-related, high-frequency vortex shedding dominates turbulence production. This increases until two-dimensional (2D) dunes have formed. Thereafter, turbulence intensities and Reynolds stress decline and three-dimensional dunes exhibit values found over 2D ripples. This is the result of shear layer dampening which occurs when the topographically-accelerated downstream velocity increases at a faster rate than flow depth. Activity at reattachment increases due to high velocity fluid imparting high mass and momentum transfer at the bed and/or wake flapping. Suspended sediment may also play a role in turbulence dampening and bed erosion. Ejections dominate over sweeps in terms of event frequency but not magnitude. Strong relationships between inward interactions and sweeps, and ejections and outward interactions, suggest that mass and momentum exchanges are dependent upon activity in all four quadrants. The results contradict the notion present in most physical models that larger bedforms exhibit most shear layer activity. Consequently an improved model for the ripple–dune transition is proposed.  相似文献   

8.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

9.
The geometry and kinematics of river dunes were studied in a reach of the Calamus River, Nebraska. During day-long surveys, dune height, length, steepness, migration rate, creation and destruction were measured concurrently with bedload transport rate, flow depth, flow velocity and bed shear stress. Within a survey, individual dune heights, lengths and migration rates were highly variable, associated with their three-dimensional geometry and changes in their shape through time. Notwithstanding this variability, there were discernible changes in mean dune height, length and migration rate in response to changing discharge over several days. Changes in mean dune height and length lagged only slightly behind changes in discharge. Therefore, during periods of both steady and unsteady flow, mean dune lengths were quite close to equilibrium values predicted by theoretical models. Mean dune steepnesses were also similar to predicted equilibrium values, except during high, falling flows when the steepness was above that predicted. Variations in mean dune height and length with discharge are similar to those predicted by theory under conditions of low mean dune excursion and discharge variation with a short high water period and long low water period. However, the calculated rates of change of height of individual dunes vary considerably from those measured. Rates of dune creation and destruction were unrelated to discharge variations, contrary to previous results. Instead, creations and destructions were apparently the result of local variations in bed shear stress and sediment transport rate. Observed changes in dune height during unsteady flows agree with theory fairly well at low bed shear stresses, but not at higher bed shear stresses when suspended sediment transport is significant.  相似文献   

10.
Surveyed outcrops of the Middle Jurassic Entrada Sandstone at Ghost Ranch, New Mexico, show the unusual occurrence of preserved aeolian dune palaeotopography buried beneath subaqueous strata. The preserved dune remnants have relief up to 35 m, trend NNW, and show internal scalloped cross-strata dipping to the WSW, with small sets occurring as both topsets and bottomsets. Outcrop data are best satisfied in computer models by 50 m high, sinuous bedforms that migrated to the WSW, while the sinuosity migrated alongcrest to the NNW. Superimposed small dunes occurred upon the stoss slope, and at the basal lee of the main bedform where they migrated alongslope to the NNW. Remnant dune palaeotopography is buried by onlapping, subaqueous, largely structureless sandstones believed to be derived by mass wasting of the upper portions of the dunes and deposited as sediment-gravity flows that infilled between the dunes. Preservation of dune palaeotopography beneath mass-flow deposits, with no evidence for gradually rising water, argues that flooding of the Entrada dune field was geologically instantaneous. The thickness and lithology of the overlying Todilto Formation conform to slight remnant palaeotopography on the Entrada surface. The Todilto is a laminated limestone and thinnest over remnant dune crestal areas, but thickens and increases in gypsum content downslope until it abruptly yields to a gypsum mound positioned over a remnant interdune hollow. The Todilto laminations are interpreted as seasonal varves deposited below wave base in a density-stratified water body. The flooding event that gave rise to the controversial Todilto water body occurred during Entrada time, with Todilto deposition occurring within an already substantial water body.  相似文献   

11.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   

12.
Coarse-gravel bedforms which resulted from Pleistocene glacial outburst floods are identified as subaqueous dunes. Comparison of the morphology of these ‘fossil’ structures with modern dunes shows that the form of two-dimensional (2-D) transverse dunes and 3-D cuspate and lunate dunes developed in coarse gravels is comparable with sand-dune morphology within lesser-scale geophysical flows. The similarity of the steepest gravel dunes with equilibrium dunes in sand indicates that grain size is not a major factor in constraining primary duneform. Internal structure indicates that flow over 2-D dunes was relatively uniform but over 3-D bedforms flow was locally variable. Flow separation and complex streaming of flow occurred over the steepest 3-D dunes. Cross-beds are thin and few approach the angle of repose; consequently most dunes did not migrate primarily by avalanching but by stoss-entrained gravel transported over the crests rolling-down and depositing on the lee slopes. Lee-side sediments are often finer than the stoss-slope sediments, which indicates the lee formed when flood power was waning. Some dunes were slightly planed-down during falling stage because lee-side cross-beds tend to be steeper than the angle of the preserved lee slope. However, silt-rich caps indicate that any height reduction was contemporary with the final deposition of foresets. Post-flood modification has been negligible although the modern topography is subdued by loess deposits within the dune troughs.  相似文献   

13.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

14.
Gravel antidunes in the tropical Burdekin River, Queensland, Australia   总被引:4,自引:0,他引:4  
The geological record is punctuated by the deposits of extreme event phenomena, the identification and interpretation of which are hindered by a lack of data on contemporary examples. It is impossible to directly observe sedimentary bedforms and grain fabrics forming under natural particle-transporting, high-velocity currents, and therefore, their characteristics are poorly documented. The deposits of such flows are exposed however, in the dry bed of the Burdekin River, Queensland, Australia following tropical cyclone-induced floods. Long wave-length (up to 19 m) gravel antidunes develop during short (days) high-discharge flows in the upper Burdekin River (maximum recorded discharge near the study reach over 25 600 m3 s?1 in February 1927). Flood water levels fall quickly (metres in a day) and flow is diverted away from raised areas of the river bed into subchannels, exposing many of the high-stage bedforms with little reworking by falling-stage currents. Gravel bedforms were observed on the dry river bed after the moderate flows of February 1994 (max. 7700 m3 s?1) and January 1996 (max. 3200 m3 s?1). The bedforms had wave-lengths in the range 8–19 m, amplitudes of up to 1 m with steeper stoss than lee faces and crest lines generally transverse to local peak-discharge flow direction. The gravel fabric and size sorting change systematically up the stoss and down the lee faces. The antidune deposits form erosive based lenses of sandy gravel with low-angle downstream dipping lamination and generally steep upstream dipping a-b planes. The internal form and fabric of the antidune gravel lenses are distinctly different from those of dune lee gravel lenses. The erosive based lenses of low-angle cross-bedded gravel with steep upstream dipping a-b planes are relatively easy to recognize and may be diagnostic of downstream migrating antidunes. The antidune gravel lenses are associated with thick (to 1 m) high-angle cross bed sets. Ancient antidune gravel lenses may be diagnostic of episodic high-discharge conditions and particularly when they are associated with high-angle cross-bedded gravelly sand they may be useful for palaeoenvironmental interpretation.  相似文献   

15.
This study examines flow, turbulence and sand suspension over large dunes in Canoe Pass, a distributary channel of the Fraser River delta, Canada. Dune morphology is characterized by a symmetrical shape and steep leeside slopes over 30°. Velocity was measured with an electromagnetic current meter and suspended sand concentration with four optical backscatter (OBS) probes. The general patterns of time-averaged velocity and sand suspension are consistent with previous studies, including an increase in mean velocity and decrease in turbulence intensity and sand concentration with height above the bed, reversed flow with high turbulence intensity and high sand concentrations in the leeside flow separation zone and an increase in near-bed velocity and sand concentration along the stoss side of the dune. Frequency spectra of near-bed velocity and OBS records from leeside separation zones are composed of two distinct frequencies, providing field confirmation of scale relations based on flume experiments. The low-frequency spectral signal probably results from wake flapping and the high-frequency signal from vortex shedding. The wake-flapping frequency predominates outside the separation zone and is linked to turbulent structures that suspend sand. Predictions from a depth-scale Strouhal Law show good agreement with measured wake-flapping frequencies. Cross-correlations of OBS records reveal that turbulent sand suspension structures advect downstream at 23–25° above the horizontal. These advection angles are similar to coherent flow structures measured in flumes and to sand suspension structures visualized over large dunes in the field.  相似文献   

16.
Preservation of cyclic steps contrasts markedly with that of subcritical‐flow bedforms, because cyclic steps migrate upslope eroding their lee face and preserving their stoss side. Such bedforms have not been described from turbidite outcrops and cores as yet. A conceptual block diagram for recognition of cyclic steps in outcrop has been constructed and is tested by outcrop studies of deep water submarine fan deposits of the Tabernas Basin in south‐eastern Spain. Experimental data indicate that depositional processes on the stoss side of a cyclic step are controlled by a hydraulic jump, which decelerates the flow and by subsequent waxing of the flow up to supercritical conditions once more. The hydraulic jump produces a large scour with soft‐sediment deformation (flames) preserved in coarse‐tail normal‐graded structureless deposits (Bouma Ta), while near‐horizontal, massive to stratified top‐cut‐out turbidite beds are found further down the stoss side of the bedform. The architecture of cyclic steps can best be described as large, up to hundreds of metres, lens‐shaped bodies that are truncated by erosive surfaces representing the set boundaries and that consist of nearly horizontal lying stacks of top‐cut‐out turbidite beds. The facies that characterize these bedforms have traditionally been described as turbidite units in idealized vertical sequences of high‐density turbidity currents, but have not yet been interpreted to represent bedforms produced by supercritical flow. Their large size, which is in the order of 20 m for gravelly and up to hundreds of metres for sandy steps, is likely to have hindered their recognition in outcrop so far.  相似文献   

17.
沙丘背风侧气流及其沉积类型与意义   总被引:6,自引:2,他引:6  
哈斯  王贵勇  董光荣 《沉积学报》2001,19(1):96-100,124
在腾格里沙漠东南缘对现代沙丘表面气流、沉积过程的野外观测结果表明,由于区域气流、沙丘形态及其相互作用等的不同使沙丘背风坡气流发生变化,在此发现三种背风坡次生气流 :分离流、附体未偏向流和附体偏向流。前者以弱的反向流为特征多发生在横向气流条件下坡度较陡的背风坡;后二者具有相对高的风速,其中附体流多发生在坡度缓和的背风坡,其方向在横向气流条件下保持原来的方向,而在斜向气流作用下发生偏转且其强度为原始风入射角的余弦函数。根据背风坡气流方向及强度,作者阐述了不同区域气流环境中沙丘背风坡沉积过程、层理类型及特征,探讨了交错层产状与区域气流方向之间的关系.  相似文献   

18.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

19.
Toward a model for airflow on the lee side of aeolian dunes   总被引:8,自引:0,他引:8  
The interaction between dunes and the primary wind results in a complex pattern of secondary airflow on the lee side of dunes. From 15 dunes studied during transverse flow conditions at Padre Island in Texas, White Sands in New Mexico, and the Algodones in California, distinct flow regions can generally be recognized, with the overall flow structure comparing favourably to that proposed for subaqueous bedforms. Downwind of dunes with flow separation is a back-flow eddy that extends about four dune-brink heights downwind from the brink of the dune. Beyond the separation cell, the velocity profiles can be divided into regions based upon segments separated by ‘kinks’ in the velocity profiles. The interior is an area above the dunes of relative high wind speed but low velocity gradient. Beneath the interior is the wake, which consists of two layers. The upper wake exhibits an uppermost portion where the flow decelerates while the remainder exhibits accelerating flow, so that the overall velocity gradient decreases downwind. The lower wake exhibits low velocity gradients and wind speeds that accelerate downwind at all heights, but primarily near the top of the layer, thereby causing the velocity gradient to increase downwind. At about eight dune heights downwind, the upper and lower wakes equilibrate to a single profile with the kink between them no longer apparent. The lowest recognizable region is the internal boundary layer. It is recognized by a relatively steep velocity gradient below the wake, and never exceeds a few tens of centimetres in height for our data set. Because of acceleration and increasing shear stress within this layer, interdune flats are at least potentially erosional. Overall, the wake and internal boundary layer show a downward transfer of momentum from upper regions so that the flow recovers. Where flow separation does not occur, simple flow expansion down the lee-face causes flow deceleration.  相似文献   

20.
Detailed measurements of flow velocity and its turbulent fluctuation were obtained over fixed, two-dimensional dunes in a laboratory channel. Laser Doppler anemometry was used to measure the downstream and vertical components of velocity at more than 1800 points over one dune wavelength. The density of the sampling grid allowed construction of a unique set of contour maps for all mean flow and turbulence parameters, which are assessed using higher moment measures and quadrant analysis. These flow field maps illustrate that: (1) the time-averaged downstream and vertical velocities agree well with previous studies of quasi-equilibrium flow over fixed and mobile bedforms and show a remarkable symmetry from crest to crest; (2) the maximum root-mean-square (RMS) of the downstream velocity values occur at and just downstream of flow reattachment and within the flow separation cell; (3) the maximum vertical RMS values occur within and above the zone of flow separation along the shear layer and this zone advects and diffuses downstream, extending almost to the next crest; (4) positive downstream skewness values occur within the separation cell, whereas positive vertical skewness values are restricted to the shear layer; (5) the highest Reynolds stresses are located within the zone of flow separation and along the shear layer; (6) high-magnitude, high-frequency quadrant-2 events (‘ejections’) are concentrated along the shear layer (Kelvin-Helmholtz instabilities) and dominate the contribution to the local Reynolds stress; and (7) high-magnitude, high-frequency quadrant-4 events occur bounding the separation zone, near reattachment and close to the dune crest, and are significant contributors to the local Reynolds stress at each location. These data demonstrate that the turbulence structure associated with dunes is controlled intrinsically by the formation, magnitude and downstream extent of the flow separation zone and resultant shear layer. Furthermore, the origin of dune-related macroturbulence lies in the dynamics of the shear layer rather than classical turbulent boundary layer bursting. The fluid dynamic distinction between dunes and ripples is reasoned to be linked to the velocity differential across the shear layer and hence the magnitude of the Kelvin-Helmholtz instabilities, which are both greater for dunes than ripples. These instabilities control the local flow and turbulence structure and dictate the modes of sediment entrainment and their transport rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号