首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper presents empirical correlations between amplification factors and simple site parameters derived from a large subset of the KiK-net data. The amplification factor is estimated from the ratios between the surface and down-hole horizontal response spectra, corrected for the varying depths and impedance of the down-hole sites (Cadet et al. in Site effect assessment using KiK-net data—part 1—a simple correction procedure for surface/downhole spectral ratios, 2011). Several site parameters are selected on the basis of their simplicity and availability at relatively low cost. They are the shallow time-average velocities VSZ, with z equal to 5, 10, 20 and 30 m, and the fundamental frequency f0. The amplification factors are then correlated with each of the individual site parameters; four other “twin-parameter”—couples (f0, VSZ)—are also considered and the correlation with amplification factors is performed through a normalization of the frequencies by each site fundamental frequency. The quality of the correlations is given by a misfit compared with the original data variance. The largest variance reduction is obtained with twin-parameter characterizations, out of which the couple (f0, VS30) proves to provide the lower misfit. The performance of single parameter correlations is relatively lower; however, the best single parameter proves to be the fundamental frequency, which provides smaller misfit than the Vsz parameters. A comparison is also performed with the amplification factors recommended in European regulations, showing that it is possible right now to significantly improve both the site characterization criteria and the associated amplification factors, for use in building codes and microzonation studies.  相似文献   

2.
Site response in Japan is characterized using thousands of surface and borehole recordings from events of moment magnitude $(\mathbf{M}) > 5.5$ collected by the KiK-net network, including the 2011 M9.0 Tohoku earthquake. Site amplification is defined by the ratio of motions at the surface to those at depth (within the borehole), corrected for the depth effect due to destructive interference using a technique based on cross-spectral ratios between surface and down-hole motions. Site effects were particularly strong at high frequencies, despite the expectation that high-frequency response may be damped by nonlinear effects. In part, the large amplitudes at high frequencies are due to the prevalence of shallow soil conditions in Japan. We searched for typical symptoms for soil nonlinearity, such as a decrease in the predominant frequency and/or amplification, using spectral ratios of weak to strong ground motions. Localized nonlinearity occurred at some recording sites, but was not pervasive. We developed a general empirical model to express site amplification for the KiK-net sites as a function of common site variables, such as the average shear-wave velocity in the uppermost 30 m ( $\text{ V}_\mathrm{S30})$ and the horizontal-to-vertical (H/V) spectral ratio. We use the model to estimate site-corrected ground-motions for the Tohoku mainshock for a reference site condition; these motions are in reasonable agreement with the predictions of some of the published ground motion prediction equations for subduction zones.  相似文献   

3.
The wave velocity for two types of granitoids was measured using the analytic method of full-wave vibration at high pressure and high temperature. The laws of velocity changes for them differ with the pressure boost and temperature rise, and the velocity change of S-type is more violent than that of I-type. The “softening point” of compressional wave velocity (V μ) is also revealed during the measurement for two types of granitoids imitating the pressure and temperature at a certain depth. But the depth of “softening”, Vp after “softening” and the percentage of Vp’s drop around the “sofrening point” for two types of granitoids are obviously different. The depth of “softening” is 15 km approximately and Vp after “softening” is 5.62 km/s for S-type granitoid. But for I-type granitoid the depth of “softening” is 26 km approximately and Vp after “softening” is 6. 08 km/s. Through careful analysis of rock slices after the experiment, it was found that the “softening” of elastic-wave velocity is caused by the partial melting of granite. Combined with the results of geophysical prospecting, these results suggest that the low-velocity layers developing in the interior of Earth crust are related to thc partial melting of different types of granitoids. The formation of the low-velocity layer in the upper-middle Earth crust is closely related to the development of S-type granitoid, but that in the lower Earth crust is closely related to the development of I-type granitoid.  相似文献   

4.
孙艺璇  徐国林 《地震学报》2023,45(1):107-115
受窄频地震仪平坦响应范围影响,窄频速度记录存在低频成分失真问题,导致地震记录可用范围受限。针对此问题,本文推导基于拉普拉斯变换和双线性变换的传递函数,实现由窄频地震记录向宽频地震记录的校正,并以日本Hi-net速度记录为例进行验证,将校正后的速度记录与同台KiK-net加速度积分所得的速度记录予以对比。结果显示,原始速度记录在低频处存在失真,而校正后的波形与KiK-net加速度积分速度记录波形一致,这表明改进的传递函数能有效地解决原速度记录中的低频成分失真问题,有效地拓宽了低频可使用范围,而且相较于Nakata校正速度记录方法,以本文给出的传递函数校正的速度记录在振幅和波形等方面的精度更高。  相似文献   

5.
罗诚  谢俊举  温增平 《地震学报》2018,40(1):108-120
选取日本熊本MW7.0地震断层距小于200 km的82个近场KiK-net台站记录到的三分量记录数据进行基线校正后,获得近场地面运动水平向的峰值加速度PGA、峰值速度PGV及周期为0.2,1,2,3,5和10 s的加速度反应谱数据,并与美国NGA-West2的地震动预测模型相比较,研究熊本地震地表和井下地震动峰值及反应谱的衰减特征,通过比较KiK-net台站地表与井下记录结果,探讨浅层场地放大效应的影响。研究结果表明:① 对于井下观测结果,NGA-West2的地震动模型对PGA和短周期0.2 s的反应谱的预测值与井下观测值相比整体偏高,而PGV和较长周期地震动(如1,2和3 s的反应谱)的预测值与井下观测值较为吻合;② 地表观测记录的PGA,PGV和周期为0.2—3 s的反应谱残差整体上随vS30对数值的增大呈线性减小的趋势,而周期为5 s和10 s的长周期部分,其场地效应的影响很小;③ 相对于井下记录,地表记录的地震动PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大,这种放大作用随浅层场地剪切波速的增大而减小;周期为3,5和10 s时长周期地震动的放大效应很小。   相似文献   

6.
Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.  相似文献   

7.
In the paper, for the application of stochastic simulation of ground motion, we put forward a method to determine “the combined effect of amplification and attenuation” (combined effect for short) of soft rock site by using digital seismic data of moderate and small earthquakes. Our approach aims at solving the problem of the combined effect of soft rock site, which is difficult to determine in most regions of China because fewer measures were done for S-wave velocity structure. The combined effect of soft rock site can be determined by using the approach recommended by us. An example is given to discuss the practical application of the method. Foundation item: The Special Funds for Major State Basic Research Project under Grant No.2002CB412706 and National Natural Science Foundation of China (50468003). Contribution No.04FE1021, Institute of Geophysics, China Earthquake Administration.  相似文献   

8.
Amplification of earthquake-induced seismic waves by soft superficial deposits often causes significant damages in the urban areas. In predicting this effect for large future earthquakes, the linear elastic response of soils is customarily assumed. To check this assumption, we have analyzed surface and downhole acceleration data from the SMART1 and SMART2 strong motion arrays in Taiwan, covering peak accelerations of up to 0·3 g. First, frequency-dependent amplification induced by the alluvial deposits at the SMART1 array was estimated using spectral ratio technique, where the records at rock site were taken as a reference motion. Statistically validated reduction in soil amplification in the strong motion relative to the weak motion in the frequency range between approximately 1 and 9 Hz was detected. Secondly, relative site responses between the Pleistocene and recent sedimentary deposits at the SMART2 array were studied. Relative amplification was shown to be clearly dependent on the excitation level. Thirdly, we compared experimentally recorded uphole/downhole spectral ratios on weak and strong ground motion with the theoretical response yielded by the geotechnical code DESRA2 which assumes hysteretic constitutive relationship of soil. Major symptoms of nonlinear ground behavior predicted by the model were found in the observed data. Back-calculation of the shear wave velocities to the depth of 47 m shows nearly 50% decrease in the strongest quakes, also accounted for by the nonlinear soil behavior.  相似文献   

9.
A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz.  相似文献   

10.
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of \(\sim \) 300–1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.  相似文献   

11.
In order to understand the site soil response of the Xiangtang borehole seismic array under real strong ground motion, reveal the site response, verify the technique of borehole exploration, and improve the precision of in-situ test and laboratory test, this paper presents a new approach, which is composed of two methods. One is the layered site seismic response method, whose layer transform matrix is always real. The other is a global-local optimization technique, which uses genetic algorithm (GA)-simplex method. An inversion of multi-component waveforms of P, SV and SH wave is carried out simultaneously. By inverting the records of three moderate and small earthquakes obtained from the Xiangtang borehole array (2# ) site, the soil dynamic characteristic parameters, including P velocity, damping ratio and frequency-dependent coefficient b, which has not been given in previous literatures, are calculated. The results show that the soil S wave velocity of the Xiangtang 2# borehole is generally greater than that obtained from the 1994 in-situ test, and is close to the velocity of the 3# borehole, which is more than 200 m away from the 2# borehole. Meanwhile, perceptible soil nonlinear behavior under peak ground motion of about 60×10-2m/s2 is detected by the inversion analysis. The presented method can be used for studying the soil response of other borehole array sites.  相似文献   

12.
The properties of rock resitivity were studied under pressure, particularly with “stress reversal”, a procedure in which the pressure applied was increased and decreased. It was observed that, 1) With pressure increasing, the main feature of resistivity change was increase-steady-decrease for high-saturation rock samples (saturation 70–100%). But the main feature for low-saturation samples was different. 2) In 10 out of 11 cases of “stress reversal” for high-saturation samples the resistivity droped (about 2%). Such drop could explain the anomalies in geoelectricity terms, which are commonly observed before earthquakes in China. 3) It was also observed shortly before rock failure that, a) the resistivity drops more dramatically (about 20%) during “stress reversal” period, which is much more than ordinary drops. b) these drops occurred not only during stress decrease but also during stress increase. c) Resistivity exhibits anisotropy: the resistivity along different directions may differ by 10%. These three features may indicate that the rock is nearing failure, while ordinary resistivity drops are only connected with “stress reversal” and may not mean the imminence of rock failure. 4) Resistivity increase was observed during the “stress reversal” period for low-saturation rock samples. The results mentioned above were explained with the effect of water flowing in and out of the cracks of rock. The temporary factors which yield a reduction of the maximum main stress, may enhence the possibility of earthquake occurrence.  相似文献   

13.
Reliable automatic procedure for locating earthquake in quasi-real time is strongly needed for seismic warning system, earthquake preparedness, and producing shaking maps. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. The main purpose of this work is to investigate the performances of different automatic procedures to choose the most suitable one to be applied for the quasi-real-time earthquake locations in northwestern Italy. The reliability of two automatic-picking algorithms (one based on the Characteristic Function (CF) analysis, CF picker, and the other one based on the Akaike’s information criterion (AIC), AIC picker) and two location methods (“Hypoellipse” and “NonLinLoc” codes) is analysed by comparing the automatically determined hypocentral coordinates with reference ones. Reference locations are computed by the “Hypoellipse” code considering manually revised data and tested using quarry blasts. The comparison is made on a dataset composed by 575 seismic events for the period 2000–2007 as recorded by the Regional Seismic network of Northwestern Italy. For P phases, similar results, in terms of both amount of detected picks and magnitude of travel time differences with respect to manual picks, are obtained applying the AIC and the CF picker; on the contrary, for S phases, the AIC picker seems to provide a significant greater number of readings than the CF picker. Furthermore, the “NonLinLoc” software (applied to a 3D velocity model) is proved to be more reliable than the “Hypoellipse” code (applied to layered 1D velocity models), leading to more reliable automatic locations also when outliers (wrong picks) are present.  相似文献   

14.
An exact formulation for borehole coupling, which is valid for all frequencies and all azimuthally symmetric and non-symmetric components, is presented. The borehole effects on downhole seismic measurements are studied in detail as functions of frequency, angle of incidence and polarization of an incident wave as well as geophone orientation. We found that correction for the borehole effect on downhole measurements should be made for frequencies above 500 Hz in a hard formation. In a soft formation, if the angle of incidence is well away from the resonance angle for SV incidence, no borehole correction is needed for frequencies below 300 Hz, while for frequencies above 300 Hz, the borehole can cause severe problems in downhole measurements. The borehole can also significantly alter the particle motion direction which implies that horizontal component rotation from data itself is unreliable for experiments with frequencies above 1 kHz in the hard formation and around 500 Hz in the soft formation.  相似文献   

15.
The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.  相似文献   

16.
利用唐山强震观测台阵提供的井下和地面数字测震资料,研究了用单台地震记录评估场地效应的方法。利用井下基岩地震记录作参考台,用地面和井下的记录求取经验传递函数。同时应用Nakamura单台评估方法求解Nakamura谱比率。通过对比,证实了对场地效应的评估可以使用地面单台测震资料进行,不必参考基岩台的资料。因此,该方法是评估重要工程场地效应的一种简便可行的方法。使用该方法可以降低地震小区划的成本。  相似文献   

17.
A series of kinematic inversions based on robust non-linear optimization approach were performed using travel time data from a series of seismic refraction experiments: CELEBRATION 2000, ALP 2002 and SUDETES 2003. These experiments were performed in Central Europe from 2000 to 2003. Data from 8 profiles (CEL09, CEL10, Alp01, S01, S02, S03, S04 and S05) were processed in this study. The goal of this work was to find seismic velocity models yielding travel times consistent with observed data. Optimum 2D inhomogeneous isotropic P-wave velocity models were computed. We have developed and used a specialized two-step inverse procedure. In the first “parametric” step, the velocity model contains interfaces whose shapes are defined by a number of parameters. The velocity along each interface is supposed to be constant but may be different along the upper and lower side of the interface. Linear vertical interpolation is used for points in between interfaces. All parameters are searched for using robust non-linear optimization (Differential Evolution algorithm). Rays are continuously traced by the bending technique. In the second “tomographic” step, small-scale velocity perturbations are introduced in a dense grid covering the currently obtained velocity model. Rays are fixed in this step. Final velocity models yield travel time residuals comparable to typical picking errors (RMS ∼ 0.1 s). As a result, depth-velocity cross-sections of P waves along all processed profiles are obtained. The depth range of the models is 35–50 km, the velocity varies in the range 3.5–8.2 km/s. Lowest velocities are detected in near-surface depth sections crossing sedimentary formations. The middle crust is generally more homogeneous and has typical P wave velocity around 6 km/s. Surprisingly the lower crust is less homogeneous and the computed velocity is in the range 6.5–7.5 km/s. The MOHO is detected in the depth ≈30–45 km.  相似文献   

18.
We studied the applicability of two types of existing three-dimensional (3-D) basin velocity structure models of the Osaka basin, western Japan for long-period ground motion simulations. We synthesized long-period (3–20 s) ground motions in the Osaka basin during a M6.5 earthquake that occurred near the hypothetical Tonankai earthquake source area, approximately 200 km from Osaka. The simulations were performed using a 3-D finite-difference method with nonuniform staggered grids using the two basin velocity structure models. To study the ground motion characteristics inside the basin, we evaluated the wave field inside the basin using the transfer functions derived from the synthetics at the basin and a reference rock site outside the basin. The synthetic waveforms at the basin site were obtained by a convolution of the calculated transfer function and the observed waveform at the reference rock site. First, we estimated the appropriate Q values for the sediment layers. Assuming that the Q value depends on the S wave velocity V S and period T, it was set to Q = (1/3V S)(T 0/T) where V S is in m/s and the reference period T 0 is 3.0 s. Second, we compared the synthetics and the observations using waveforms and pseudovelocity response spectra, together with a comparison of the velocity structures of the two basin models. We also introduced a goodness-of-fit factor to the pseudovelocity response spectra as an objective index. The synthetics of both the models reproduced the observations reasonably well at most of the stations in the central part the basin. At some stations, however, especially where the bedrock depth varies sharply, there were noticeable discrepancies in the simulation results of the models, and the synthetics did not accurately reproduce the observation. Our results indicate that the superiority of one model over the other cannot be determined and that an improvement in the basin velocity structure models based on simulation studies is required, especially along the basin edges. We also conclude that our transfer function method can be used to examine the applicability of the basin velocity structure models for long-period ground motion simulations.  相似文献   

19.
A hybrid optimization scheme, comprising a genetic algorithm in series with a local least-squares fit operator, is used for the inversion of weak and strong motion downhole array data obtained by the Kik-Net Strong Motion Network during the Mw7.0 Sanriku-Minami Earthquake. Inversion of low-amplitude waveforms is first employed for the estimation of low-strain dynamic soil properties at five stations. Successively, the frequency-dependent equivalent linear algorithm is used to predict the mainshock site response at these stations, by subjecting the best-fit elastic profiles to the downhole-recorded strong motion. Finally, inversion of the mainshock empirical site response is employed to extract the equivalent linear dynamic soil properties at the same locations. The inversion algorithm is shown to provide robust estimates of the linear and equivalent linear impedance profiles, while the attenuation structures are strongly affected by scattering effects in the near-surficial heterogeneous layers. The forward and inversely estimated equivalent linear shear wave velocity structures are found to be in very good agreement, illustrating that inversion of strong motion site response data may be used for the approximate assessment of nonlinear effects experienced by soil formations during strong motion events.  相似文献   

20.
We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2–5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600–750 m/s and a thickness of 100–200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号