首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term, uniform series of U BV R observations of T Tauri and Ae Herbig stars obtained over 20 yr at the Maidanak Observatory as part of the ROTOR program are analyzed. We find a linear relationship between the characteristic variability time scale and the bolometric luminosity of the star+disk system: the higher the luminosity, the slower the brightness variations. This dependence is valid over a wide range of masses and luminosities, from T Tauri stars to Ae Herbig stars. On average, the variability time scale is one-quarter the Keplerian period at the dust-sublimation radius, which is known from interferometric observations. Some T Tauri stars have periods from 25 to 120 days, which are preserved over several observing seasons. These periods correspond to Keplerian orbits with semi-major axes from 0.14 to 0.52 AU. The results obtained provide indirect evidence for the existence of protoplanets in the gas-dust disks of stars in early stages of their evolution toward the main sequence.  相似文献   

2.
We have calculated profiles for the CIV 1550 doublet arising in an accretion shock in a T Tauri star assuming that (i) the accretion zone at the stellar surface is axially symmetric (a circular spot or spherical belt), (ii) the velocity and density of the gas in front of the shock do not vary within the accretion zone, and (iii) the gas falls radially inward toward the star. The calculated CIV 1550 profiles differ qualitatively from those observed in the spectra of T Tauri stars, probably because the velocity of the infalling gas in T Tauri stars has a tangential component of some tens of km/s due to the nonradial magnetic field near the stellar surface.  相似文献   

3.
Based on many years of observational data from a photometric database on young stars, we propose a new classification scheme for the light curves of classical T Tauri stars. Our analysis of master light-curve shapes for 28 classical T Tauri stars is used to distinguish up to five light-curve types. The proposed scheme suggests a qualitative interpretation in terms of interaction of the central star with its circumstellar accretion disk.  相似文献   

4.
The parameters of radio pulsars in binary systems and globular clusters are investigated. It is shown that such pulsars tend to have short periods (of the order of several milliseconds). Themagnetic fields of most of the pulsars considered are weak (surface fields of the order of 108?109 G). This corresponds to the generally accepted view that short-period neutron stars are spun up by angular momentum associated with the stellar wind from a companion. However, the fields at the light cylinders in these objects are two to three orders of magnitude higher than for the main population of single neutron stars. The dependence of the pulse width on the period does not differ from the corresponding dependences for single pulsars, assuming the emission is generated inside the polar cap, at moderate distances from the surface or near the light cylinder. The radio luminosities of pulsars in binary systems do not show the correlation with the rate of loss of rotational energy that is characteristic for single pulsars, probably due to the influence of accreting matter from a companion. Moreover, accretion apparently decreases the power of the emergent radiation, and can explain the observed systematic excess of the radio luminosity of single pulsars compared to pulsars in binary systems. The distributions and dependences presented in the article support generally accepted concepts concerning the processes occurring in binary systems containing neutron stars.  相似文献   

5.
An analysis of the basic parameters of a sample of radio and X-ray pulsars that are members of close binary systems is used to separate them into several families according to the nature of the pulsar companions and the previous evolution of the systems. To quantitatively describe the main parameters of close binaries containing neutron stars, we have performed numerical modeling of their evolution. The main driving forces of the evolution of these systems are the nuclear evolution of the donor, the magnetically coupled and radiation-induced stellar winds of the donor, and gravitational-wave radiation. We have considered donors that are low-mass stars in various stages of their evolution, nondegenerate helium stars, and degenerate stars. The systems studied are either the products of the normal evolution of close binaries with large initial component-mass ratios or result from inelastic collisions of old neutron stars with single and binary low-mass, main-sequence stars in the dense cores of globular clusters. The formation of single millisecond pulsars requires either the dynamical disruption of a low-mass (?0.1M) donor or its complete evaporation under the action of the X-ray radiation of the millisecond pulsar. The observed properties of binary radio pulsars with eccentric orbits combined with the bimodal spatial-velocity distribution of single radio pulsars suggest that it may be possible to explain the observed rotational and spatial motions of all radio pulsars as a result of their formation in close binaries. In this case, neutron stars formed from massive single stars or the components of massive wide binaries probably cannot acquire the high spatial velocities or rapid rotation rates that are required for the birth of a radio pulsar.  相似文献   

6.
The principle-components method is used as a basis to analyze the distributions of known radio pulsars in spaces of eigenvectors of correlation matrices for various samples of pulsars and classification parameters (from 4 to 11 parameters characterizing the physical and kinematic properties of the objects). Pulsars with periods P < 0.1 s form a separate cluster, far from the cluster formed by “normal” pulsars with P ~ 1 s, in all the studied spaces. These two groups also differ appreciably in their other parameters (period derivatives, magnetic fields, pulse widths). In particular, the spatial velocities of short-period pulsars (106 km/s) are appreciably lower than those displayed by long-period pulsars (334 km/s). The distributions of the pulsars at southern (Z < 0) and northern (Z > 0) Galactic latitudes do not differ; i.e., there is no anisotropy in the motions in these two directions perpendicular to the Galactic plane, or in the corresponding distributions of the pulsar parameters.  相似文献   

7.
Bobylev  V. V.  Baykova  A. T. 《Astronomy Reports》2020,64(4):326-335
Astronomy Reports - The kinematic properties of the Scorpius–Centaurus association were studied using spatial velocities of approximately 700 young T Tauri stars. Their proper motions and...  相似文献   

8.
We describe typical features of the chemical composition of proto-planetary disks around brown dwarfs. We model the chemical evolution in the disks around a low-mass T Tauri star and a cooler brown dwarf over a time span of 1 Myr using a model for the physical structure of an accretion disk with a vertical temperature gradient and an extensive set of gas-phase chemical reactions. We find that the disks of T Tauri stars are, in general, hotter and denser than the disks of lower-luminosity substellar objects. In addition, they have more pronounced vertical temperature gradients. The atmospheres of the disks around low-mass stars are more strongly ionized by UV and X-ray radiation, while less dense brown-dwarf disks have higher fractional ionizations in their midplanes. Nevertheless, in both cases, most molecules are concentrated in the so-called warm molecular layer between the ionized atmosphere and cold midplane, where grains with ice mantles are abundant.  相似文献   

9.
We have searched for protostellar or protoplanetary structures in the vicinity of young T Tauri stars using a technique that is able to distinguish long-period components of the observed light curves. We perform a statistical spectral analysis of the one-year mean light curves of three selected stars (T Tau, DI Cep, and SU Aur) and plot synthetic light curves for the most reliable period of each star. In a first approximation, the results show a good coincidence between our synthetic light curves and the original light curves, supporting the hypothesis that protostellar or protoplanetary structures are present in the studied systems. An analysis of the 0.36–20 µm spectral energy distributions of the program stars also leads to the conclusion that infrared anomalies for young stars are most likely due to thermal radiation from not-yet-formed companions in the vicinity of the star.  相似文献   

10.
We present the results of simultaneous UBVRI photometry and polarimetry of the classical T Tauri star CO Ori carried out at the Crimean Astrophysical Observatory during the 18 years between 1986 and 2004. We show that the variations of linear polarization accompanying the star’s brightness variations follow the law characteristic of UX Ori stars. This suggests that the brightness variations of the star are mainly due to changes of the circumstellar extinction due to non-uniform structure of the circumstellar environment, and to an “optimal” orientation of the circumstellar gas and dust disk relative to the observer, whose line of sight crosses the gas and dust atmosphere of the disk. We determine the star’s intrinsic polarization due to scattering of light in the circumstellar disk. The polarization position angle indicates the orientation of the disk’s symmetry axis in the plane of the sky. Our analysis of an archival light curve for CO Ori confirms the existence of a many-year cycle of photometric activity, suspected by us earlier. The refined period of this cycle is 12.4 years. The existence of such activity cycles of UX Ori stars testifies to considerable deviations of their circumstellar disks from axial symmetry, a reflection of either stellar binarity or the commencement of the process of planetary formation.  相似文献   

11.
Relaxation times in the spaces of several stellar-motion parameters are obtained for a number of open-cluster models. The differences between the relaxation times in these spaces increase with the degree of nonstationarity of the cluster models. In the course of the cluster’s evolution, the relaxation times increase in all the spaces considered. During violent relaxation, the stars occupy all domains accessible to them, first in absolute velocity and then in clustercentric distance. The dependence of the coarse-grained phase-space density of the cluster on small initial perturbations of the phase-space coordinates of its constituent stars tends to decrease at times exceeding the time scales for violent and “collisional” relaxation.  相似文献   

12.
The rotational periods P, period derivatives dP/dt, and magnetic fields B in the region where the emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) is generated are calculated using a model that associates the emission of these objects with the existence of drift waves at the periphery of the magnetosphere of a neutron star. The values obtained for these parameters are P = 11?737 ms, dP/dt = 3.7 × 10?16?5.5 × 10?12, and log B (G) = 2.63?6.25. We find a dependence between the X-ray luminosity of AXPs and SGRs, L x, and the rate at which they lose rotational energy, dE/dt, which is similar to the L x(dE/dt) dependence for radio pulsars with detected X-ray emission. Within the errors, AXPs/SGRs and radio pulsars with short periods (P < 0.1 s) display the same slopes for their log(dP/dt)-log P relations and for the dependence of the efficiency of their transformation of rotational energy into radiation on their periods. A dipole model is used to calculate the surface magnetic fields of the neutron stars in AXPs and SGRs, which turn out to be, on average, comparable to the surface fields of normal radio pulsars (〈log B s (G)〉 = 11.90).  相似文献   

13.
Results of numerical modeling of the gas dynamics ofmaterial in the envelopes of T Tauri binary stars with a small component mass ratios (q = 0.08) are reported. In such systems, the less massive component is moving at a supersonic velocity, and the more massive component can move with either a subsonic or supersonic velocity. The modeling results show that the morphology of the flow changes substantially in the transition from supersonic to subsonic motion of the massive component. In particular, one of the two bow shocks vanishes, flows ofmaterial in the system are redistributed, and the characteristics of the accretion disks change. In addition, the effect of the change in the accretion mode on the evolution of the binary system and the possibility of recovering some parameters of the system from observational manifestations of shocks in the circumstellar envelope are considered.  相似文献   

14.
The mechanism of magnetodipole braking of radio pulsars is used to calculate new values of the surface magnetic fields of neutron stars. The angles β between the spin axes and magnetic moments of the neutron stars were estimated for 376 radio pulsars using three different methods. It is shown that small inclinations of magnetic axes dominate. The equatorial magnetic fields for the considered sample of pulsars are calculated using the β values obtained. As a rule, these magnetic fields are a factor of a few higher than the corresponding values in known catalogs.  相似文献   

15.
A comparative analysis of various parameters of pulsars with short (P < 0.1 s) and long (P > 0.1 s) periods is carried out. There is no correlation between the radio and gamma-ray luminosities of the pulsars and their surfacemagnetic fields, but there is a correlation between the X-ray luminosity and the surfacemagnetic field. A dependence of the X-ray and gamma-ray luminosities on the magnetic field at the light cylinder is also found. This result provides evidence for the formation of hard, non-thermal emission at the periphery of the magnetosphere. An appreciable positive correlation between the luminosity and the rate of rotational energy loss by the neutron star is observed, supporting the idea that all radio pulsars have the same basic source of energy. The efficiency of the transformation of rotational energy into radiation is significantly higher in long-period pulsars. The dependence of the pulse width on the pulsar period is steeper for pulsars with short periods than for those with long periods. The results obtained support earlier assertions that there are differences in the processes generating the emission in pulsars with P < 0.1 s and those with P > 0.1 s.  相似文献   

16.
We analyze possible origins of the observed high rotational and spatial velocities of radio pulsars. In particular, these can be understood if all radio pulsars originate in close binary systems with orbital periods of 0.1–100 days, with the neutron star being formed by a type Ib,c supernova. The high spatial velocities of pulsars (v p up to 1000 km/s) reflect the high Keplerian velocities of the components of these binaries, while their short periods of rotation (P p < 4 s) are due to the rapid rotation of the presupernova helium-star components with masses of 2.5–10 M, which is synchronous with their orbital rotation. Single massive stars or components in wide binaries are likely to produce only slowly rotating (P p > 4 s) neutron stars or black holes, which cannot be radio pulsars. As a result, the rate of formation of radio pulsars should be a factor of a few lower than the rate of type II and type Ib,c supernovae estimated from observations. This scenario for the formation of radio pulsars is supported by (i) the bimodal spatial velocity distribution of radio pulsars; (ii) the coincidence of the observed spatial velocities of radio pulsars with the orbital velocities of the components of close binaries with nondegenerate helium presupernovae; (iii) the correlation between the orbital and rotational periods for 22 observed radio pulsars in binaries with elliptical orbits; and (iv) the similarity of the observed rate of formation of radio pulsars and the rate of type Ib,c supernovae.  相似文献   

17.
The results of two-dimensional gas-dynamical numerical simulations of the structure of matter flows in the envelopes of a number of T Tauri binary systems with elliptical orbits are considered. The main flow elements in inner regions of protoplanetary disks of these stars are described. The influence of shocks on the size of the gap—a rarified region in the inner parts of the protoplanetary disk—is analyzed. A method is proposed for estimating the size of this gap from the numerical simulations, and the gap sizes for the studied stars are determined and compared with observational results. The flow dynamics in the gap is considered, and the periodic variations of the gap size on time scales of several orbital periods are analyzed. Possible observational manifestations of the studied flows are discussed.  相似文献   

18.
Popov  M. V.  Smirnova  T. V. 《Astronomy Reports》2021,65(11):1129-1135
Astronomy Reports - We have analyzed two-dimensional correlation functions from the dynamic spectra of 11 pulsars using the archival data of the “Radioastron” project. The time-sections...  相似文献   

19.
Accretion disks in binary systems can experience hydrodynamical influences at both their inner and outer edges. The former is typical for protoplanetary disks around young T Tauri stars, while the latter is typical for circumstellar disks in close binaries. This influence excites perturbations with various scales and amplitudes in the disk. The nonlinear evolution of perturbations with a finite, but small amplitude against the background of a sub-Keplerian flow is investigated. Nonlinear effects at the fronts of perturbation waves lead to the formation of discontinuities in the density and radial velocity; i.e., to formation of shocks. The tangential flow in the neighborhood of the shock becomes equivalent to a flow in a boundary layer. Due to an instability of the tangential flow, the disk becomes turbulent. The characteristics of the turbulence depend on the parameters of the perturbations, but the Shakura–Syunyaev α parameter does not exceed ~0.1.  相似文献   

20.
We present the results of population syntheses for binary stars carried out using the “Scenario Machine” code with the aim of analyzing events that may result in long gamma-ray bursts. We show that the observed distribution of morphological types of the host galaxies of long gamma-ray bursts can be explained in a model in which long gamma-ray bursts result from the core collapse of massive Wolf-Rayet stars in close binaries. The dependence of the burst rate on galaxy type is associated with an increase in the rate of stellar-wind mass-loss with increasing stellar metallicity. The separation of binary components at the end of their evolution increases with the stellar-wind rate, resulting in a reduction of the number of binaries that produce gamma-bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号