首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research was to refine the actual conceptual model related to the activation of high‐altitude temporary springs within the carbonate Apennines in southern Italy. The research was carried out through geophysical, hydrogeological, hydrochemical and isotopic investigations at the Acqua dei Faggi experimental site during five hydrologic years. The research demonstrated that, in carbonate aquifers where low‐permeability faults cause the aquifer system to be compartmentalized, high‐altitude temporary springs may be recharged by groundwater. In such settings, neither surface water infiltration in karst systems nor perched temporary aquifers play a role of utmost importance. The rare (once or a few time a year) activation of such springs is due to the fact that groundwater unusually reach the threshold head that allows the spring to flow. The activation of the studied high‐altitude temporary spring also depended on relationships between a low‐permeability fault core and a karst system that locally interrupts the low‐permeability barrier. In fact, when the hydraulic head did not reach the karst system, the concentrated head loss within the fault core did not allow the spring to flow, because the groundwater entirely flowed through the fault towards the downgradient compartment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Multiple working hypotheses can be used to evaluate permissible alternative hydrogeological interpretations at sites with limited subsurface control. This approach was applied to test the viability of three conceptual aquifer system architecture models coupled with three hypothesized source locations for a 1,4-dioxane plume in a heterogeneous glacial aquifer system in Washtenaw County, Michigan. The three alternative conceptual models characterized the site hydrogeology with increasingly complex distributions of hydrostratigraphic units: (A) an effective aquifer, (B) a layered confined aquifer, and (C) a discretely heterogeneous aquifer model. Each was incorporated into an independently calibrated numerical ground water flow (MODFLOW) model. Steady-state and transient flow simulations of the alternative models were evaluated using both hydraulic flow field characteristics observed under natural conditions and the perturbed response after local remedial pumping activity began. Three plausible locations where 1,4-dioxane could have entered the aquifer system were identified using historical information at the site: (1) manufacturing waste water disposal lagoons, (2) a 60 foot (18 m) deep kettle lake, and (3) a shallow impoundment on a local stream. Advective transport modeling (MODPATH) was used to assess the consistency of the hypothesized source locations with observed contaminant migration pathways inferred from the mapped location of the plume. Evaluation of the nine combinations of hydrogeologic conceptualizations and 1,4-dioxane source locations led to elimination of four working hypotheses and discounting of two others, leading to reduced overall uncertainty and the development of new insights into the system behavior.  相似文献   

3.
Ground water budget analysis in arid basins is substantially aided by integrated use of numerical models and environmental isotopes. Spatial variability of recharge, storage of water of both modern and pluvial age, and complex three-dimensional flow processes in these basins provide challenges to the development of a good conceptual model. Ground water age dating and mixing analysis with isotopic tracers complement standard hydrogeologic data that are collected and processed as an initial step in the development and calibration of a numerical model. Environmental isotopes can confirm or refute a priori assumptions of ground water flow, such as the general assumption that natural recharge occurs primarily along mountains and mountain fronts. Isotopes also serve as powerful tools during postaudits of numerical models. Ground water models provide a means of developing ground water budgets for entire model domains or for smaller regions within the model domain. These ground water budgets can be used to evaluate the impacts of pumping and estimate the magnitude of capture in the form of induced recharge from streams, as well as quantify storage changes within the system. The coupled analyses of ground water budget analysis and isotope sampling and analysis provide a means to confirm, refute, or modify conceptual models of ground water flow.  相似文献   

4.
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.  相似文献   

5.
Analytical and numerical models to explain steady rates of spring flow   总被引:1,自引:0,他引:1  
Swanson SK  Bahr JM 《Ground water》2004,42(5):747-759
Flow from some springs in former glacial lakebeds of the Upper Midwest is extremely steady throughout the year and does not increase significantly after precipitation events or seasonal recharge. Analytical and simplified numerical models of spring systems were used to determine whether preferential ground water flow through high-permeability features in shallow sandstone aquifers could produce typical values of spring discharge and the unusually steady rates of spring flow. The analytical model is based on a one-dimensional solution for periodic ground water flow. Solutions to this model suggest that it is unlikely that a periodic forcing due to seasonal variations in areal recharge would propagate to springs in a setting where high-permeability features exist. The analytical model shows that the effective length of the aquifer, or the length of flowpaths to a spring, and the total transmissivity of the aquifer have the greatest potential to impact the nature of spring flow in this setting. The numerical models show that high-permeability features can influence the magnitude of spring flow and the results demonstrate that the lengths of ground water flowpaths increase when high-permeability features are explicitly modeled, thus decreasing the likelihood for temporal variations in spring flow.  相似文献   

6.
Ground water recharge and flow characterization using multiple isotopes   总被引:2,自引:0,他引:2  
Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.  相似文献   

7.
The salinization of rivers, as indicated by salinity increases in the downstream direction, is characteristic of arid and semiarid regions throughout the world. Historically, salinity increases have been attributed to various mechanisms, including (1) evaporation and concentration during reservoir storage, irrigation, and subsequent reuse; (2) displacement of shallow saline ground water during irrigation; (3) erosion and dissolution of natural deposits; and/or (4) inflow of deep saline and/or geothermal ground water (ground water with elevated water temperature). In this study, investigation of salinity issues focused on identification of relative salinity contributions from anthropogenic and natural sources in the Lower Rio Grande in the New Mexico-Texas border region. Based on the conceptual model of the system, the various sources of water and, therefore, salinity to the Lower Rio Grande were identified, and a sampling plan was designed to characterize these sources. Analysis results for boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta(2)H), and strontium ((87)Sr/(86)Sr) isotopes, as well as basic chemical data, confirmed the hypothesis that the dominant salinity contributions are from deep ground water inflow to the Rio Grande. The stable isotopic ratios identified the deep ground water inflow as distinctive, with characteristic isotopic signatures. These analyses indicate that it is not possible to reproduce the observed salinization by evapotranspiration and agricultural processes alone. This investigation further confirms that proper application of multiple isotopic and geochemical tracers can be used to identify and constrain multiple sources of solutes in complex river systems.  相似文献   

8.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

9.
The recharge location for many springs is unknown because they can be sourced from proximal, shallow, atmospheric sources or long‐traveled, deep, regional aquifers. The stable isotope (18O and 2H) geochemistry of springs water can provide cost‐effective indications of relative flow path distance without the expense of drilling boreholes, conducting geophysical studies, or building groundwater flow models. Locally sourced springs generally have an isotopic signature similar to local precipitation for that region and elevation. Springs with a very different isotopic composition than local meteoric inputs likely have non‐local recharge, representing a regional source. We tested this local vs. regional flow derived hypothesis with data from a new, large springs isotopic database from studies across Western North America in Arizona, Nevada, and Alberta. The combination of location‐specific precipitation data with stable isotopic groundwater data provides an effective method for flow path determination at springs. We found springs in Arizona issue from a mix of regional and local recharge sources. These springs have a weak elevation trend across 1588 m of elevation where higher elevation springs are only slightly more depleted than low elevation springs with a δ18O variation of 5.9‰. Springs sampled in Nevada showed a strong elevation‐isotope relationship with high‐elevation sites discharging depleted waters and lower elevation springs issuing enriched waters; only a 2.6‰ difference exists in 18O values over an elevation range of more than 1500 m. Alberta's springs are mostly sourced from local flow systems and show a moderate elevation trend of 1200 m, but the largest range in δ18O, 7.1‰.  相似文献   

10.
Hao Y  Yeh TC  Wang Y  Zhao Y 《Ground water》2007,45(1):46-52
There are approximately 470,000 km(2) of karst aquifers that feed many large springs in North China. Turbulent flow often exists in these karst aquifers, which means that the classical ground water model based on Darcy's law cannot be applied here. Ground water data are rare for these aquifers. As a consequence, it is difficult to quantitatively investigate ground water flow in these karst systems. The purpose of this study is to develop a parsimonious model that predicts karst spring discharge using gray system theory. In this theory, a white color denotes a system that is completely characterized and a black color represents a system that is totally unknown. A gray system thus describes a complex system whose characteristics are only partially known or known with uncertainty. Using this theory, we investigated the karst spring discharge time series over different time scales. First, we identified three specific components of spring discharge: the long-term trend, periodic variation, and random fluctuation. We then used the gray system model to simulate the long-term trend and obtain periodic variation and random fluctuation components. Subsequently, we developed a predictive model for karst spring discharge. Application of the model to Liulin Springs, a representative example of karst springs in northern China, shows that the model performs well. The predicted results suggest that the Liulin Springs discharge will likely decrease over time, with small fluctuations.  相似文献   

11.
Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fès and Meknès. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of 2H and 18O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain.  相似文献   

12.
Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self‐organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point‐located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large‐magnitude springs, and frequent microbial contamination of wells all support the model of self‐organized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.  相似文献   

13.
Isotopes and sustainability of ground water resources, North China Plain   总被引:5,自引:0,他引:5  
Ground water in deep confined aquifers is one of the major water resources for agricultural, industrial, and domestic uses in the North China Plain. Detailed information on ground water age and recharge is vital for the proper management of these water resources, and to this end, we used carbon 14 of dissolved inorganic carbon and tritium in water to measure the age and determine the recharge areas of ground water in the North China Plain. These isotopic data suggest that most ground water in the piedmont part of the North China Plain is <40 years old and is recharged locally. In contrast, ground water in the central and littoral portions of the North China Plain is 10,000 to 25,000 years old. The delta18O (deltaD) values of this ground water are 1.7 per thousand (11 per thousand) less than that in the piedmont plain ground water and possibly reflect water recharged during a cooler climate during the last glaciation. The temperature of this recharge, based on delta18O values, ranges from 3.7 degrees C to 8.4 degrees C, compared to 12 degrees C to 13 degrees C of modern recharge water. The isotopic data set combined indicates that ground water in the central and littoral part of the North China Plain is being mined under non-steady state conditions.  相似文献   

14.
Conant B 《Ground water》2004,42(2):243-257
Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.  相似文献   

15.
Geophysical surveys have been carried out in two fjord delta aquifers in western Norway. Geophysical methods comprised ground penetrating radar (GPR), shallow reflection seismic and resistivity measurements. The purpose of the investigations was to evaluate hydrogeological properties of the fjord delta aquifers with emphasis on the possibilities of abstracting saline groundwater for use in fish farming. At Sunndalsøra, reflection seismic was helpful in the mapping of the base of the aquifer. Resistivity profiles revealed both the spatial and seasonal variability of seawater intrusion. Penetration depths of ground penetrating radar (GPR-D) revealed the spatial variation of the boundary of the transition zone between saline and fresh groundwater. Maps of GPR-D can be used to indicate direction and magnitude of mean hydraulic gradients and thus to locate optimal sites for both fresh and saline groundwater abstraction.In fjord delta aquifers, both rivers and abandoned river channels constitute important groundwater divides. Optimal locations for saline groundwater abstraction wells are in areas separated from the rivers by abandoned river channels. In areas between the rivers and the abandoned river channels, groundwater abstraction will result in decreasing salinity of the water.  相似文献   

16.
Carbon biogeochemistry of ground water, Guiyang, southwest China   总被引:4,自引:0,他引:4  
Li SL  Liu CQ  Tao FX  Lang YC  Han GL 《Ground water》2005,43(4):494-499
Variations in the concentrations and isotopic compositions (delta13C(DIC)) of dissolved inorganic carbon (DIC) reflect contamination and biogeochemical cycling of the carbon in ground water. In order to understand contamination and biogeochemical cycling of DIC, we carried out research on the geochemistry of ground water of Guiyang, the capital city of Guizhou Province, China. Results show that ground water is mainly characterized by SO4.HCO3-Ca.Mg and HCO3-Ca.Mg chemical compositions. The hydrochemical characteristics of these types of water are mainly controlled by lithology of the aquifers. HCO3- is the dominant species of DIC in ground water and has lower concentrations and more negative values of delta13C(DIC) in the high-flow (summer monsoon) season, as compared to the low-flow season. This indicates that DIC is relatively enriched in carbon of biological origin in the high-flow season as compared to the low-flow season and that biological activities are the predominant control on shifts of stable carbon isotope values. The evidence that the delta13C(DIC) values of ground water decrease with increasing concentrations of anthropogenic species shows that the carbon isotopic composition of DIC can be a useful tracer of contamination, in addition to biogeochemical cycling of inorganic carbon in ground water. Results from this study show that ground water is impacted by significant levels of contamination from human activities, especially in the urban areas, as well as the northeast and west suburbs, in Guiyang city, southwest China.  相似文献   

17.
Merokarst aquifers — relatively thin (<1–2 m) karstified carbonate units interbedded between mudstone, shale, or sandstone — constitute a significant proportion of carbonate terrain and underlie a large portion of the west- and south-central USA, yet few advances have been made in our understanding of porosity development and flow-path generation in these complex systems in decades. Toward this end, we used a multi-geophysical approach at the well-studied Konza Prairie Biological Station (KPBS), a part of the larger Flint Hills (25,734 km2), underlain by thin limestone units (1–2 m thick) interbedded with mudstone/shale units (2–4 m thick), to elucidate hydrologic connectivity and potential controls on known groundwater flow directions. We combined electrical resistivity tomography (ERT), surface and borehole nuclear magnetic resonance (NMR), and ground penetrating radar (GPR) measurements across a low order catchment where over 25 boreholes and groundwater wells sampling perched aquifers could be used to constrain interpretation of lithology, potential flow paths, and permeability. Data revealed that groundwater export may be an unappreciated component of lateral-flow-dominated models used to represent merokarst in that: (a) potentiometric surfaces from two limestone units showed groundwater flows toward a hydrologic depression, opposite the direction of stream flow, in the upstream portion of the catchment, (b) long term measures of groundwater levels revealed a greater variance and overall water storage in this same upstream area compared to wells near the outlet, and (c) ERT and NMR results indicate pronounced lateral heterogeneity within a given unit, suggestive of a greater degree of vertical hydrological connectivity than usually considered for horizontally-layered merokarst. Our data suggest vertical connectivity can shunt water to depth in these “sandwiched” merokarst aquifers, yielding atypical groundwater flow directions and unrealized deep export of weathering solutes and carbon.  相似文献   

18.
Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.  相似文献   

19.
Ground water discharge and nitrate flux to the Gulf of Mexico   总被引:3,自引:0,他引:3  
Ground water samples (37 to 186 m depth) from Baldwin County, Alabama, are used to define the hydrogeology of Gulf coastal aquifers and calculate the subsurface discharge of nutrients to the Gulf of Mexico. The ground water flow and nitrate flux have been determined by linking ground water concentrations to 3H/3He and 4He age dates. The middle aquifer (A2) is an active flow system characterized by postnuclear tritium levels, moderate vertical velocities, and high nitrate concentrations. Ground water discharge could be an unaccounted source for nutrients in the coastal oceans. The aquifers annually discharge 1.1 +/- 0.01 x 10(8) moles of nitrate to the Gulf of Mexico, or 50% and 0.8% of the annual contributions from the Mobile-Alabama River System and the Mississippi River System, respectively. In southern Baldwin County, south of Loxley, increasing reliance on ground water in the deeper A3 aquifer requires accurate estimates of safe ground water withdrawal. This aquifer, partially confined by Pliocene clay above and Pensacola Clay below, is tritium dead and contains elevated 4He concentrations with no nitrate and estimated ground water ages from 100 to 7000 years. The isotopic composition and concentration of natural gas diffusing from the Pensacola Clay into the A3 aquifer aids in defining the deep ground water discharge. The highest 4He and CH4 concentrations are found only in the deepest sample (Gulf State Park), indicating that ground water flow into the Gulf of Mexico suppresses the natural gas plume. Using the shape of the CH4-He plume and the accumulation of 4He rate (2.2 +/- 0.8 microcc/kg/1000 years), we estimate the natural submarine discharge and the replenishment rate for the A3 aquifer.  相似文献   

20.
International borders, ground water flow, and hydroschizophrenia   总被引:1,自引:0,他引:1  
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号