首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The giant sediment-hosted Jinding zinc-lead deposit is located in the Lanping Basin, northwestern Yunnan Province, China. The genesis of the deposit has long been debated and the sources of the ore-forming fluids and metals are controversial. This study presents rare earth element (REE) and noble gas isotope data that constrain the origins of the ore fluids and the heat source driving the hydrothermal circulation. The early-stage sulfides are enriched in light REEs and have high ∑REE values (30.8–94.8 ppm) and weakly negative Eu (δEu 0.85–0.89) and Ce anomalies (δCe 0.84–0.95), suggesting that the fluids were likely derived from dissolution of Upper Triassic marine carbonates with input of REEs from aluminosilicate rocks in the basin. In contrast, the late-stage sulfides have irregular REE patterns, generally low ∑REE values (0.24–10.8 ppm) and positive Eu (δEu 1.22–10.9) and weakly negative Ce anomalies (δCe 0.53–0.90), which suggest that the ore-forming fluids interacted with evaporite minerals. The 3He/4He (0.01–0.04 Ra) and 40Ar/36Ar values (301–340) of the ore-forming fluids indicate crustal and atmospheric origins for these noble gases. These findings are in agreement with the published fluid inclusion microthermometry data and the results of H, O, C, S, Pb and Sr isotope studies. Our data, in combination with published results, support a two-stage hydrothermal mineralization model, involving early-stage basinal brines and late-stage meteoric water that acquired metals and heat from crustal sources.  相似文献   

2.
ABSTRACT

In this article we present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Longzhu rhyolite porphyry from the Cathaysia Block, Southeast China to constrain its petrogenesis and provide insights into the early Precambrian tectonic evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/207Pb age of 1819 ± 16 Ma, interpreted as the crystallization age of the Longzhu rhyolite porphyry. Zircons from this sample have εHf(t) values ranging from – 8.4 to – 2.2 and THfDM2 model ages from 2.76 to 2.46 Ga. The whole-rock Nd isotopic data from the Longzhu rhyolite porphyries yield εNd(t) values spanning – 6.3 to – 4.7 and TNdDM2 model ages from 2.81 to 2.69 Ga. The rhyolite porphyries have geochemical features similar to those of the typical A-type granites (rhyolites), with high SiO2, total alkali contents and FeOt/MgO ratios, and low CaO and MgO contents. Additionally, the rhyolite porphyries have high total rare earth element concentrations (627 ~ 760 ppm), high (La/Yb)N values (14.5 ~ 26.9), strongly negative Eu anomalies (δEu = 0.28 ~ 0.41), and display enrichments of Rb, Ga, Th, and U and depletions of Sr, Nb, Ta, Eu, and Ti. The geochemical and Nd-Hf isotopic features suggest that the Palaeoproterozoic Longzhu rhyolite porphyries were generated by partial melting of source rocks similar to those of the Badu Complex in an intra-plate extensional setting. The results from this study, when combined with existing geochronological data, further demonstrate that the Palaeoproterozoic rocks of Wuyishan terrane probably represent a remnant of the Columbia supercontinent.  相似文献   

3.
Basaltic porphyries from the northeast North China craton (NCC) provide an excellent opportunity to examine the nature of their mantle source and the secular evolution of the underlying mantle lithosphere. In addition, the study helps to constrain the age and the mechanism of NCC lithospheric destruction. In this paper, we report geochronological, geochemical, and Sr–Nd isotopic analyses of a suite of mafic lavas. Detailed laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating yielded an age of 223.3 ± 1.1 million years, which we regard as representing the crystallization age of the basaltic porphyries. The bulk-rock analysed samples are enriched in both large ion lithophile elements (LILEs) (i.e. Ba, Sr, and Pb) and light rare earth elements (LREEs), but depleted in high field strong elements (HFSEs) (i.e. Nb, Ta, Zr, Hf, and Ti) and heavy rare earth elements (HREEs), without significant Eu anomalies (Eu/Eu*?= 089–0.98). The basaltic porphyries have undergone low degrees (~5%) of partial melting of a garnet-bearing lherzolite mantle. The rocks display very uniform (87Sr/86Sr) i (0.70557–0.70583) and negative ?Nd (t) values (–11.9 to –10.1). These features indicate that the western Liaoning basaltic porphyries were derived from a common enriched lithosphere mantle that had previously been metasomatized by fluids related to subduction of Palaeo-Asian sedimentary units. However, the mafic melts were not affected to a significant degree by crustal contamination. Based on earlier studies, these findings provide new evidence that the northeast margin of the NCC had undergone a phase of post-orogenic extensional tectonics during the Middle Triassic. Furthermore, lithospheric thinning occurring across the northern NCC might have been initiated during Early Triassic times and was likely controlled by the final closure of the Palaeo-Asian Ocean, as well as the collision of Mongolian arc terrenes with the NCC.  相似文献   

4.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

5.
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and ge  相似文献   

6.
Basalts from Hardat Tolgoi Mine were studied systematically by using petrochemical and isotope geo- chemical methods in order to discuss their chemical properties, diagenetic material sources and tectonic environ- ment. The analysis results indicate that the alkali basalts are characterized by low silica and high alkalinic (Na〉K) and iron-titanium contents. The distribution patterns of the rare earth elements (REE) are the "rightist" type, which typically show evident fractionation between light REEs and heavy REEs with (La/Yb)y ratios from 8.04 to 10.4, but no significant negative Eu anomalies were observed (SEu=l.01 to 1.04). The basalts are relatively enriched in large ion lithophile elements (LILE, Ba, Sr) and high field strength elements (HFSE, Nb, Ta, Hf). Ratios of 206pb/204pb vary between 18.434 and 18.550, ratios of 207pb/204pb are between 15.541 and 15.569, and ratios of 206spb/204pb are between 38.331 and 38.536. The diagenetic substance is believed from the asthenospheric mantle and in intraplate environment, which was constructed during continent stretch, without being significantly contaminated by crustal materials.  相似文献   

7.
Late Cenozoic intraplate basaltic rocks in northeastern China have been interpreted as being derived from a mantle source composed of DMM and EM1 components. To constrain the origin of the enriched mantle component, we have now determined the geochemical compositions of basaltic rocks from the active Baekdusan volcano on the border of China and North Korea. The samples show LREE-enriched patterns, with positive Eu and negative Ce anomalies. On a trace element distribution diagram, they show typical oceanic island basalt (OIB)-like LILE enrichments without significant Nb or Ta depletions. However, compared with OIB, they show enrichments in Ba, Rb, K, Pb, Sr, and P. The Nb/U ratios are generally within the range of OIB, but the Ce/Pb ratios are lower than those of OIB. Olivine phenocrysts are characterized by low Ca and high Ni contents. The radiogenic isotopic characteristics (87Sr/86Sr = 0.70449 to 0.70554; εNd = −2.0 to +1.8; εHf = −1.7 to +6.1; 206Pb/204Pb = 17.26 to 18.12) suggest derivation from an EM1-like source together with an Indian MORB-like depleted mantle. The Mg isotopic compositions (δ26Mg = −0.39 ± 0.17‰) are generally lower than the average upper mantle, indicating carbonates in the source. The 87Sr/86Sr ratios decrease with decreasing δ26Mg values whereas the 143Nd/144Nd and (Nb/La)N ratios increase. These observations suggest the mantle source of the Baekdusan basalts contained at least two components that resided in the mantle transition zone (MTZ): (1) recycled subducted ancient (∼2.2–1.6 Ga) terrigenous silicate sediments, possessing EM1-like Sr–Nd–Pb–Hf isotopic signatures and relatively high values of δ26Mg; and (2) carbonated eclogites with relatively MORB-like radiogenic isotopic compositions and low values of δ26Mg. These components might have acted as metasomatizing agents in refertilizing the asthenosphere, eventually influencing the composition of the MTZ-derived plume that produced the Baekdusan volcanism.  相似文献   

8.
The timing and extent of cratonic destruction are crucial to understanding the crustal evolution of the North China Craton (NCC). Zircon U–Pb–Hf isotope data and the whole-rock major and trace element characteristics of the Huyu igneous rocks in northwestern Beijing, China, provide possible new evidence for the initial destruction of the NCC. The igneous rocks occur as several sills and dikes, including lamprophyre, monzonite porphyry, and aplite. The lamprophyres have high Mg# and K2O contents. The monzonite porphyries have high Mg#, high K2O contents, and negative εHf(t) values with zircon U–Pb ages of 225.5–227.7 Ma. These two types of rocks are both enriched in large ion lithosphere elements (LILEs) and light rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs) and high rare earth elements (HREEs) and have almost no Eu anomalies and relatively high total rare earth element (ΣREE) contents. In contrast, the aplites exhibit high silica and K2O contents, low MgO contents, and more negative εHf(t) values with a zircon U–Pb age of 206.2 Ma. The aplites are also enriched in LILEs and LREEs but are depleted in HFSEs and HREEs, with strongly negative Eu, Ti, P, La, Ce, and Sr anomalies and relatively low ΣREE contents. These results indicate that the lamprophyres and monzonite porphyries represent a continuous cogenetic magma evolution series after melt derived from an enriched metasomatized lithospheric mantle experienced crust assimilation and fractional crystallization. The aplites were produced by the fractional crystallization of low-Mg parental magma derived from melting of the ancient Archaean crust. The occurrence of the Huyu intrusive rocks with many other plutons of similar ages on the northern margin of the NCC suggests that the northern NCC entered an intraplate extensional tectonic environment in the Late Triassic.  相似文献   

9.
The Beiya gold–polymetallic orefield, with gold reserves of 305 t, is one of the most representative porphyry-skarn orefields in the Jinshajiang–Ailaoshan Cu–Au ore belt within the Sanjiang region of southwest China. The orefield contains seven deposits: the Wandongshan, Hongnitang, Dashadi, Bijiashan, Weiganpo, Matouwan, and Bailiancun deposits. In this paper we report on the geochemistry and geochronology of porphyries associated with mineralization from the seven deposits. The results show that all the porphyries have similar geochemistry, with high alkalinity, high contents of SiO2, Al2O3, K2O, and Sr, high K2O/Na2O ratios, low MgO, Y, and Yb contents, enrichments in Ba, K, and Pb, depletions in P, Ti, Nb, and Ta, and non-evident to weak Eu depletions (δEu = 0.42–0.99). In the SiO2 vs. Th/Ce diagram, the porphyry samples are distributed in the area of thickened lower crust, and in the Sr/Y vs. Y and La/Yb vs. Yb diagrams, the porphyries broadly followed the batch-melting trend of amphibolite containing up to 10% garnet. LA-MC-ICP-MS zircon U–Pb dating analysis suggests that the porphyries were emplaced between 34.62 ± 0.25 and 36.72 ± 0.25 Ma. They were coeval with lamprophyres (34 to 36 Ma) in the Beiya area and with potassic–ultrapotassic intrusive rocks (40 to 35 Ma) within the Jinshajiang–Ailaoshan magmatic belt, indicating possible genetic relation between these rock types. We suggest that the porphyries in the Beiya gold–polymetallic orefield were derived from the partial melting of a K-rich mafic source in the thickened lower crust, with the melting triggered by asthenospheric upwelling following the removal of lower lithospheric mantle.  相似文献   

10.
Fluorite from Mississippi Valley Type (MVT) deposits in the South Pennine Orefield, England, displays significantly different distributions of rare earths and yttrium (REY) compared to fluorite from similar MVT deposits in the North Pennine Orefield. Samples from the South Pennine Orefield display negative Ce and positive Gd and Y anomalies but lack any Eu anomaly, indicating that the REY were mobilized from relatively pure marine sedimentary carbonates. In marked contrast, fluorite from the North Pennine Orefield lacks any Ce and Gd anomalies but shows a pronounced positive Eu anomaly, suggesting that the REY were provided by different source rock(s), that the mineralizing hydrothermal fluid had experienced higher temperatures prior to fluorite precipitation, and that it was derived from deeper crustal levels in the north compared to the south. The isotopic composition of Sr in Blue John fluorite from the South Pennine Orefield suggests that Sr was mobilized from Lower Carboniferous (Tournaisian) limestones, whereas Pb isotopes suggest that in contrast to REY and Sr, Pb was derived from aluminosilicate rocks. Neither Nd nor Sr or Pb isotopes can be used to radiometrically date the formation of Blue John fluorite. All isotope systems studied indicate that the limestone host rock of this fluorite mineralization did not contribute to the trace element budget of the hydrothermal fluid. Our results show that different solutes in a natural water (hydrothermal fluid, groundwater, etc.) may be derived from different sources, and that the study of a small set of elements or isotope ratios may not provide full insight into the genesis or history of a mineralization or a hydrothermal fluid. Our data provide evidence for the uncoupling of Sr, Nd and Pb during fluid-rock interaction and fluid migration, and show that the use of plots such as 87Sr/86Sr vs. Nd. to learn about mixing relationships (as is commonly done in igneous geochemistry) is unreliable when applied to natural waters and their precipitates.Editorial handling: B. Lehmann  相似文献   

11.
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The medium-tonnage Sarsuk polymetallic Au deposit is located in the Devonian volcanic–sedimentary Ashele Basin of the south Altay Orogenic Belt (AOB), Northwest China. Within the deposit, the rhyolite porphyries and diabases are widespread, emplaced into strata. The orebodies are hosted by the rhyolite porphyries. We studied the petrography, geochemistry, and Sr–Nd–Hf isotopes of the rhyolite porphyries and diabases, in order to understand the petrogenesis of these rocks and their tectonic significance. They display typical bimodality in geochemistry compositions. The diabases are characterized by SiO2 contents of 44.84–59.77 wt.%, high Mg# values (43–69), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb and Ta, low (87Sr/86Sr)i (0.706687–0.707613) values, positive εNd(t) (4.8–6.8) values, and positive and high εHf(t) (7.15–15.19) values, suggesting a depleted lithosphere mantle source that might have been metasomatized by subduction-related components. The rhyolite porphyries show affinity to sanukitoid magmas contents [high SiO2 (78.6–81.82 wt.%) and MgO (3.38–5.94 wt.%, one sample at 0.61 wt.%), and enrichments in LILE and LREE], they were derived from the equilibrium reactions between a mantle source and subducted oceanic crust materials. Those characteristics together with the positive εNd(t) (4.1–8.4) and εHf(t) (2.88–15.17) values indicate that the diabases and rhyolite porphyries were generated from the same mantle peridotite source. But the rhyolite porphyries underwent fractional crystallization of Fe–Ti oxides, plagioclase, and apatite due to their negative Eu (δEu = 0.21–0.28) and P anomalies. According to the geochemical and isotopic data, the Sarsuk Middle Devonian igneous rocks are considered to be the products of the juvenile crustal growth in an island arc setting. The Sarsuk polymetallic Au deposit formed slightly later than the Ashele Cu–Zn deposit in the Ashele Basin, but they have the same tectonic setting, belonging to the trench–arc–basin system during extensional process in the south AOB.  相似文献   

13.
Rare earth element (REE) and strontium isotope data (87Sr/86Sr) are presented for hydromagnesite and surface waters that were collected from Dujiali Lake in central Qinghai-Tibet Plateau (QTP), China. The goal of this study is to constrain the solute sources of hydromagnesite deposits in Dujiali Lake. All lake waters from the area exhibit a slight LREE enrichment (average [La/Sm]PAAS = 1.36), clear Eu anomalies (average [Eu/Eu*]PAAS = 1.31), and nearly no Ce anomalies. The recharge waters show a flat pattern (average [La/Sm]PAAS = 1.007), clear Eu anomalies (average [Eu/Eu*] PAAS = 1.83), and nearly no Ce anomalies (average [Ce/Ce*]PAAS = 1.016). The REE+Y data of the surface waters indicate the dissolution of ultramafic rock at depth and change in the hydrogeochemical characteristics through fluid-rock interaction. These data also indicate a significant contribution of paleo-groundwater to the formation of hydromagnesite, which most likely acquired REE and Sr signatures from the interaction with ultramafic rocks. The 87Sr/86Sr data provide additional insight into the geochemical evolution of waters of the Dujiali Lake indicating that the source of Sr in the hydromagnesite does not directly derive from surface water and may have been influenced by both Mg-rich hydrothermal fluids and meteoric water. Additionally, speciation modeling predicts that carbonate complexes are the most abundant dissolved REE species in surface water. This study provides new insights into the origins of hydromagnesite deposits in Dujiali Lake, and contributes to the understanding of hydromagnesite formation in similar modern and ancient environments on Earth.  相似文献   

14.
The host rocks of the porphyry tin deposits in the Yangbin area are principally topaz-bearing porphyry dikes about 2 km long and 2–20m wide. Three lithologie types are identified for the dikes: topaz-bearing potassium feldspar granitic porphyry, topaz-bearing monzonitic granitic porphyry and topaz-bearing quartz porphyry. The content of topaz in the rocks ranges from 10 to 20 vol.%. Porphyritic texture is characteristic, with quartz, potassium feldspar and albite as main phenocryst minerals. The phenocryst occupies 10–20 vol% of the rocks. The rock groundmass consists of subhedral topaz, quartz and protolithionite. Topaz has a unit-cell parameter b=8.797 (Å), and F:OH=1.92:0.18, indicating a F-rich variety formed at high temperature. The topaz-bearing porphyries occurring in this area are strongly peraluminous (A/NKC=1.574–12.94), with high ratios of F/Cl (146–303) and Rb/Sr (5–122). They are rich in incompatible elements (Sn, 313 × 10?6–1042 × 10?6; W, 6 × 10?6–218 × 10?6; Nb, 27 × 10?6–54 × 10?6), but poor in compatible elements (Sr, 10 × 10?6–28 × 10?6; Ba, 58 × 10?6–73 × 10?6; V, 3 × 10?6–12 × 10?6, Cl, 150 × 10?6–226 × 10?6). The rocks are also characterized by high total REE amount (281.69 × 10?6–319.76 × 10?6), with strong Eu depletion (δEu=0.01–0.03) and low ratio of LREE/HREE (0.78–0.84). In summary, the authors propose an idea of S-type genesis for the topaz-bearing porphyries with tin mineralization, instead of I-type.  相似文献   

15.
滇西新生代富碱斑岩的岩石特征与成因   总被引:87,自引:0,他引:87       下载免费PDF全文
邓万明  黄萱 《地质科学》1998,33(4):412-425
对滇西金沙江-墨江缝合带中段新生代富碱斑岩的岩石地球化学和同位素组成的研究表明,这一套岩石形成在板内造山后的剪切和拉张构造环境,是壳-幔混合层物质部分熔融,快速上升浅部定位所形成。本区壳-幔过渡带可能是先期生成的一种富集源区。文中还讨论了壳-幔过渡带的成因及富碱斑岩岩浆活动与岩石圈演化的关系。  相似文献   

16.
Associated with the Cretaceous Okorusu carbonatite complex (Namibia) is a hydrothermal fluorite mineralization hosted in Pan-African country rock marbles, which resulted from fluid-rock reaction between the marbles and orthomagmatic, carbonatitic fluids expelled from the carbonatite. Yellow fluorite I was deposited in veins up to 5 cm away from the wallrock contact, followed by purple and colorless fluorite II, smoky quartz and barite, a Mn-rich crust on early calcite, and pure calcite. This clear-cut sequence of mineral growth allows an investigation into fluid-rock interaction processes between the marble and the migrating carbonatitic fluid, and element fractionation patterns between the fluid and subsequent hydrothermal precipitates.Fluorite I shows a progressive change in color from dark yellow to colorless with purple laminations over time of deposition. Subsequent fluorite I precipitates show an increase in Ca, and a continuous decrease in F, Sr, REE, Y, Th, U and Pb contents. The ratios (Eu/Eu*)cn, Th/Pb and U/Pb increase whereas Y/Ho, Th/U and (La/Yb)cn decrease. The Sr-isotopic composition remains constant at 87Sr/86Sr = 0.70456-0.70459, but with varying, highly radiogenic Pb (206Pb/204Pb = 32-190, 238U/204Pb = 7-63). Fluorite II has 87Sr/86Sr = 0.70454-0.70459, 206Pb/204Pb = 18.349, and 207Pb/204Pb = 15.600, and a chemical composition similar to youngest fluorite I. The Mn-rich crust on early calcite accumulated REE, Ba, Pb, Zr, Cs, Th and U, developing into pure calcite with a prominent negative Ce anomaly and successively more radiogenic Sr. The calculated degrees of fluid-rock interaction, f = weight fraction of fluid/(fluid + marble), decrease from fluorite I and most fluorite II (f = 0.5) to calcite (f = 0.2-0.3) and hydrothermal quartz (f ? 0.1). A crush-leach experiment for fluid inclusions in the hydrothermal quartz yielded a Rb-Sr isochron age of 103 ± 12 Ma. Crush-leach analysis for the carbonatitic fluid trapped in the wallrock yielded a trend from the fluid leachate to the host quartz (206Pb/204Pb = 18.224 and 18.602, 207Pb/204Pb = 15.616 and 15.636, respectively) extending from carbonatite towards crustal rocks.Calculated trace element distribution coefficients fluorite/fluid are below unity throughout, and increase from La to Yb. Elements largely excluded from fluorite (Ba, Pb, LREE relative to HREE) were incorporated later into the Mn-rich crust on calcite. The trace element patterns of the hydrothermal minerals are related to changing aCO2 and aF in the fluid during continued fluid-marble reaction. A predominance of carbonate over fluoride complexing in the fluid as reactions proceeded controlled the Y/Ho, Th/U and REE patterns in the fluid and the crystallizing phases. Deviations from these trends indicate discontinuous processes of fluid-rock reaction.  相似文献   

17.
The Tibetan Plateau is one of the most significant Cu poly-metallic mineralization regions in the world and preserves important information related to subductional and collisional porphyry Cu mineralization. This study investigates a new occurrence of Cu mineralization-related andesitic porphyries in the western domain of the Gangdese magmatic belt and assesses its petrologic, zircon U-Pb geochronology, whole-rock chemistry, and Sr-Nd-Hf-Pb isotope data. Zircon U-Pb dating of three ore-related porphyries yields crystallization ages of 212–211 Ma. These ages are consistent with previous molybdenite Re-Os dating, indicating a late Triassic magmatic and Cu mineralization event in the western Gangdese magmatic belt. Nb, Ta, and Ti depletion, Th and LREE enrichment, and high La/Yb and Th/Yb ratios in addition to high U/Yb ratios from zircons suggest that the magma was generated in an active continental arc setting. The porphyries have radiogenic isotopic compositions with (87Sr/86Sr)i 0.70431–0.70473, εNd(t) +1.1 to +3.8, (207Pb/204Pb)i 15.601–15.622, and (208Pb/204Pb)i 38.450–38.693, as well as high positive zircon εHf(t) values from +6.2 to +10.6 (mean value 8.3), corresponding to model ages (TDM) ranging from 509 Ma to 819 Ma (mean 646 Ma). This suggests that the andesitic magmatism was dominantly sourced from depleted mantle materials that were modified by subducted oceanic sediment-derived melts during the subduction of the Neo-Tethys Ocean. The mineralization-related porphyries contain amphibole and epidote, as well as high whole-rock Fe2O3/FeO and zircon Ce4+/Ce3+ ratios, suggesting hydrous and highly oxidized parent magmas. Considering the existing Cu mineralization and highly oxidized magma of the well-preserved Triassic andesitic igneous rocks in the western Gangdese belt, the subduction-related continental arc magma system is favorable for subduction-related porphyry Cu deposits. The existence of Luerma porphyry mineralization demonstrates that there are at least five generations of porphyry Cu-(Mo-Au) mineralization in the Gangdese magmatic belt, which advances the timeframe of porphyry mineralization to the late Triassic.  相似文献   

18.
通过对陕西金堆城钼矿区花岗斑岩体和八里坡斑岩体进行地球化学测试,测得金堆城斑岩体的SiO2含量为72.89%~74.06%,MgO为0.07%~0.3%,稀土总量为43.29×10-6~93.94×10-6,稀土元素配分曲线呈右倾型,具有明显的铕负异常和弱的负铈异常(δEu为0.43~0.78,δCe为0.74~0.86),富集大离子亲石元素K、Rb、U、Th和Sr等元素,亏损Ba、P和Ti等元素。八里坡斑岩体的SiO2含量为69.87%~70.80%,Al2O3 14.93%~15.46%,MgO 0.28%~0.48%,Sr/Y比值大于60,稀土总量为125.23×10-6~139.63×10-6,铕为无异常或微弱的正异常(δEu为0.98~1.04),铈为微弱的负异常(δCe为0.92~0.96),富集Ba、U、K等大离子亲石元素,而亏损P、Ta和Ti等元素。金堆城斑岩体和八里坡斑岩体的岩石类型为I型花岗岩,Pb同位素显示金堆城斑岩体的Pb主要来自下地壳,但有地幔物质的加入,八里坡斑岩体的Pb主要来自下地壳。金堆城斑岩体的ε(Nd,t)值为较低负值(-13.8~-15.2),但ε(Sr,t)变化较大,为-46.4~13.6,八里坡斑岩体具有负低ε(Nd,t)值(-20.4)和正高ε(Sr,t)值(64.5~65.2)。金堆城花岗斑岩和八里坡花岗斑岩的Sr、Nd、Pb同位素与华北地块相似,这两个岩体的源区为华北地块组成部分。  相似文献   

19.
《International Geology Review》2012,54(14):1786-1800
Geochronology, geochemistry, and whole-rock Sr–Nd–Pb isotopes were studied on a suite of Mesozoic adamellites from eastern China to characterize their ages and petrogenesis. Sensitive high-resolution ion microprobe U–Pb zircon analyses were done, yielding consistent ages of 123.2 ± 1.8 to 122.1 ± 2.1 Ma for the samples. These rocks belong to the alkaline magma series in terms of K2O + Na2O contents (8.45–9.58 wt.%) and to the shoshonitic series based on their high K2O contents (5.23–5.79 wt.%). The adamellites are further characterized by high light rare earth element contents [(La/Yb)N = 14.96–45.99]; negative Eu anomalies (δEu = 0.46–0.75); positive anomalies in Rb, Th, Pb, and U; and negative anomalies in Sr, Ba, and high field-strength elements (i.e. Nb, Ta, P, and Ti). In addition, all of the adamellites in this study display relatively low radiogenic Sr [(87Sr/86Sr)i = 0.7081–0.7089] and negative ?Nd(t) values from –16.70 to –17.80. These results suggest that the adamellites were derived from low-degree partial melting of an enriched lithospheric mantle below the North China Craton (NCC). The parent magmas likely experienced fractional crystallization of potassium feldspar, plagioclase and Fe–Ti oxides (e.g. rutile, ilmenite, and titanite), apatite, and zircon during the ascent of alkaline rocks without crustal contamination.  相似文献   

20.
Adakites are commonly associated with porphyry Cu-Au ore deposits worldwide. Two groups of early Cretaceous adakites occur widely in central-eastern China but their association with mineralization contrasts sharply: adakites from the Lower Yangtze River Belt (LYRB) host one of the largest porphyry Cu-Au deposit belts in China, whereas those from the South Tan-Lu Fault (STLF), which is adjacent to the LYRB, are all ore-barren. These adakites, thus, provide a rare opportunity to explore the main factor that controls the genetic links between adakites and Cu-Au mineralization. Here we report new chronological, elemental and Sr-Nd-Pb isotopic data and present a comprehensive geochemical comparison for these two groups of adakites. At a given SiO2, the STLF adakites show lower Al2O3 and higher K2O, K2O/Na2O, MgO, Cr, Ni and Mg# than the LYRB adakites. These systematic differences may indicate a dry basaltic source for the STLF adakites and a water-enriched basaltic source for the LYRB adakites. The STLF adakites have high Sr/Y and (La/Yb)N, which are positively correlated, and low Sr/La and Ce/Pb, while the LYRB adakites show lower (La/Yb)N but higher Sr/Y, Sr/La and Ce/Pb than the STLF adakites. Furthermore, the LYRB adakites are characterized by highly radiogenic Pb isotopic compositions with 206Pb/204Pb(t) up to 18.8, which are clearly distinct from the STLF adakites with low radiogenic Pb (206Pb/204Pb(t) = 15.8-16.4). Although the high Mg# of the two groups of adakites suggest reaction with mantle peridotites during magma ascent, the geochemical comparisons indicate that the STLF adakites were derived from partial melting of the delaminated eclogitic lower continental crust, while the LYRB adakites were derived from partial melting of the seawater-altered oceanic crust that was being subducted towards the LYRB during the early Cretaceous. The petrogenetic contrasts between these two groups of high-Mg adakites, therefore, indicate that the large-scale Cu-Au mineralization is associated with oceanic slab melting, not delamination or recycling of the ancient lower continental crust, as previously proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号