首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We give an elementary model for the evolution of dust in galaxies, based on abundance arguments. The model takes account of grain core production in both supernovae and giant stars, and includes mantle growth in the interstellar medium. Destruction of grain cores does not appear to be a dominant effect. We show that a self-consistent picture can be made in which the interstellar dust mass is an approximately constant fraction of the heavy element mass in the interstellar medium. This result is demonstrated to be essentially independent of outflow or inflow of interstellar material.  相似文献   

4.
5.
We investigate the far-infrared (FIR) properties of a sample of blue compact dwarf galaxies (BCDs) observed by AKARI . By utilizing the data at wavelengths of  λ= 65  , 90 and 140 μm, we find that the FIR colours of the BCDs are located at the natural high-temperature extension of those of the Milky Way and the Magellanic Clouds. This implies that the optical properties of dust in BCDs are similar to those in the Milky Way. Indeed, we explain the FIR colours by assuming the same grain optical properties, which may be appropriate for amorphous dust grains, and the same size distribution as those adopted for the Milky Way dust. Since both interstellar radiation field and dust optical depth affect the dust temperature, it is difficult to distinguish which of these two physical properties is responsible for the change of FIR colours. Then, in order to examine if the dust optical depth plays an important role in determining the dust temperature, we investigate the correlation between FIR colour (dust temperature) and dust-to-gas ratio. We find that the dust temperature tends to be high as the dust-to-gas ratio decreases but that this trend cannot be explained by the effect of dust optical depth. Rather, it indicates a correlation between dust-to-gas ratio and interstellar radiation field. Although the metallicity may also play a role in this correlation, we suggest that the dust optical depth could regulate the star formation activities, which govern the interstellar radiation field. We also mention the importance of submillimetre data in tracing the emission from highly shielded low-temperature dust.  相似文献   

6.
7.
This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850-μm flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60-, 100-μm ( IRAS ) and 850-μm (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450-μm data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model – two temperature components are now required. Using our 450-μm data and fluxes from the literature, we find that the 450/850-μm flux ratio for the galaxies is remarkably constant, and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGs) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ∼2 and the cold dust component has a similar temperature in all galaxies     . The 60-μm luminosities of the galaxies were found to depend on both the dust mass and the relative amount of energy in the warm component, with a tendency for the temperature effects to dominate at the highest L 60. The dust masses estimated using the new temperatures are higher by a factor of ∼2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.  相似文献   

8.
The large dust masses apparently present in some galaxies at high redshift prompt the question of just how much interstellar dust can be present per unit mass of a galaxy. Under very simple assumptions, we derive an upper limit to this mass — showing both what is possible for a galaxy of given total mass and various gas fractions, and what represents the ultimate upper limit for a given stellar or total mass, if we are free to choose the particular gas fraction. The results hold for a galaxy formed with arbitrary gas outflows, or arbitrary inflows of unenriched gas, and illustrate the difficulty of generating very high dust masses in galaxies.  相似文献   

9.
10.
We present photometric evolution models of galaxies, in which, in addition to the stellar component, the effects of an evolving dusty interstellar medium have been included with particular care. Starting from the work of Calura et al., in which chemical evolution models have been used to study the evolution of both the gas and dust components of the interstellar medium in the solar neighbourhood, elliptical and irregular galaxies, it has been possible to combine these models with a spectrophotometric stellar code that includes dust reprocessing ( grasil ) to analyse the evolution of the spectral energy distributions (SEDs) of these galaxies. We test our models against observed SEDs both in the local universe and at high redshift, and use them to predict how the percentage of reprocessed starlight evolves for each type of galaxy. The importance of following the dust evolution is investigated by comparing our results with those obtained by adopting simple assumptions to treat this component.  相似文献   

11.
12.
13.
14.
15.
Traditionally, it has been believed that extinction effects due to dust within the interstellar medium of external galaxies are rather small and can largely be ignored. Over the last 10 years, however, considerable doubt has been cast over the evidence to support this comfortable idea, and it has become clear that a more detailed analysis is required. Here, a new technique for mapping the extinction in disc galaxies with high resolution is presented.
This technique has been applied to the Sc galaxy NGC 6946. The results show that dust extinction significantly affects both the overall brightness and appearance of the galaxy. The total extinction is found to be AB =0.45 – somewhat larger than the value of AB =0.2 usually quoted for an Sc galaxy. When corrected for dust the morphology more closely resembles that of an Sb galaxy rather than an Sc galaxy.
The most surprising result of this work is finding interarm regions that suffer high extinction. It appears that these regions appear faint because of the high extinction and not as a result of low stellar density. There are also interarm regions that suffer little extinction; these are therefore truly regions of low stellar density.  相似文献   

16.
17.
We investigate the influence of scattering and geometry on the attenuation curve in disc galaxies. We investigate both qualitatively and quantitatively which errors are made by either neglecting or approximating scattering, and which uncertainties are introduced as a result of a simplification of the star–dust geometry. We find that the magnitude of these errors depends on the inclination of the galaxy and, in particular, that, for face-on galaxies, the errors due to improper treatment of scattering dominate those due to imprecise star–dust geometry. Therefore we argue that, in all methods aimed at determining the opacity of disc galaxies, scattering should be taken into account in a proper way.  相似文献   

18.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
The vertical profiles of disc galaxies are built by the material trapped around stable periodic orbits, which form their 'skeletons'. Therefore, knowledge of the stability of the main families of periodic orbits in appropriate 3D models enables one to predict possible morphologies for edge-on disc galaxies. In a pilot survey we compare the orbital structures that lead to the appearance of 'peanut'- and 'X'-like features with the edge-on profiles of three disc galaxies (IC 2531, NGC 4013 and UGC 2048). The subtraction from the images of a model representing the axisymmetric component of the galaxies reveals the contribution of the non-axisymmetric terms. We find a direct correspondence between the orbital profiles of 3D bars in models and the observed main morphological features of the residuals. We also apply a simple unsharp masking technique in order to study the sharpest features of the images. Our basic conclusion is that the morphology of the boxy 'bulges' of these galaxies can be explained by considering disc material trapped around stable 3D periodic orbits. In most models, these building-block periodic orbits are bifurcated from the planar central family of a non-axisymmetric component, usually a bar, at low-order vertical resonances. In such a case, the boxy 'bulges' are parts of bars seen edge-on. For the three galaxies we study, the families associated with the 'peanut' or 'X'-shape morphology are probably bifurcations at the vertical 2/1 or 4/1 resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号