首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present first data on the geochemistry, mineralogy and morphology of near-vent sediments (35 and 200 m from active vent) and ridge flank sediments (approximately 3 km from the vent field) as well as oxyhydroxide deposits from the Endeavour segment, Juan de Fuca Ridge. The purpose of the study was to understand better the origin and characteristic features of metalliferous sediments associated with base and precious metal massive sulfides in volcanic terrains. Hydrothermal components in sediments are Fe-Si ± S-rich and Mn-Fe-Si-rich phases, sulfides and barite, which were exclusively derived from plume fallout. Sulfides are only a minor constituent of near-vent sediments (2-4 wt%) and were not detected in ridge flank sediments. The study suggests that the distribution of hydrothermal phases and associated elements in near-vent and ridge flank sediments is affected mainly by processes of agglomeration, dissolution, absorption and settling that take place within a plume and to a lesser extent post-depositional processes. Rapid deposition of sulfides in the vicinity of the vents is reflected in a sharp drop of the Cu concentrations in sediments with increasing distance from the vents. Besides sulfides, important carriers of Pb, Cu, Zn and Co in near-vent sediments are Fe-Mn oxyhydroxides that occur together with silica as aggregates of gel-like material and flaky particles and as coatings on filaments. Away from the vents, trace metals are mostly in Fe-Mn oxyhydroxides and authigenic Fe-rich montmorillonite. Oxyhydroxides at the Main Endeavour field are interpreted to have originated from oxidation of mound sulfides accompanied by precipitation of primary Fe-oxyhydroxide + silica from low-temperature fluids. At the Mothra field, seafloor deposits and chimney crusts composed of Fe-oxyhydroxide ± Mn + silica are considered to be direct precipitates from hydrothermal fluids that have been less diluted with seawater. Oxyhydroxide deposits exhibit unique microtextures that resemble mineralized microorganisms and may indicate existence of diverse microbial communities.  相似文献   

3.
Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征   总被引:4,自引:0,他引:4  
用 ICP-MS对取自 Juan de Fuca洋脊 Endeavour段 5块热液硫化物样品的 13个分析样进行了稀土元素(REE)测试.结果显示该区硫化物样品的 REE含量较低(0.35~ 14.8 μ g/g),所有样品的 REE球粒陨石标准化分布模式均表现出 Eu正异常和 LREE富集的特征,表明硫化物中的 REE来自热液.不同喷口硫化物的 REE含量变化较大,同一块状硫化物不同部位的含量也有较大差异,主要是由于硫化物形成过程中,热液和海水的混合不均一性以及不同矿物沉淀和 (或 )溶解的结果.硫化物 REE的分布特征主要受热液的影响,烟囱内外层 Eu正异常的变化主要受矿物组成和物理化学条件的控制.  相似文献   

4.
Despite its location on sediment-free basalt, vent fluids from the Main Endeavour Field (MEF) contain chemical species that indicate fluids have interacted with sediments during circulation. We report on the distribution and isotopic abundances of organic compounds (C1-C3 alkanes and alkenes, benzene and toluene) in fluids collected from the Main Endeavour Field (MEF) in July, 2000, to understand the processes that regulate their abundances and characterize fluid sources. Aqueous organic compounds are derived from the thermal alteration of sedimentary organic matter and subsequently undergo further oxidation reactions during fluid flow. Fluid:sediment mass ratios calculated using ΣNH4 concentrations indicate that the sediments are distal to the MEF, resulting in a common reservoir of fluids for all of the vents. Following the generation from sediment alteration, aqueous organic compounds undergo secondary alteration reactions via a stepwise oxidation reaction mechanism. Alkane distributions and isotopic compositions indicate that organic compounds in MEF fluids have undergone a greater extent of alteration as compared to Middle Valley fluids, either due to differences in subsurface redox conditions or the residence time of fluids at subsurface conditions. The distributions of the aromatic compounds benzene and toluene are qualitatively consistent with the subsurface conditions indicated by equilibration of aqueous alkanes and alkanes. However, benzene and toluene do not achieve chemical equilibrium in the subsurface. Methane and CO2 also do not equilibrate chemically or isotopically at reaction zone temperatures, a likely result of an insufficient reaction time after addition of CO2 from magmatic sources during upflow. The organic geochemistry supports the assumption that the sediments with which MEF fluids interact has the same composition as sediments present in Middle Valley itself, and highlight differences in subsurface reaction zone conditions and fluid flow pathways at these two sites.  相似文献   

5.
 The use of ocean floor basalt chemistry as a tool to investigate mantle composition and processes requires that we work with basalts that have been modified little since leaving the mantle. One source of such basalts is melt inclusions trapped in primitive crystals. However, obtaining information from these melt inclusions is complicated by the fact that melt inclusions in natural basalts are essentially always altered by post-entrapment crystallization. This requires that we develop techniques for reconstructing the original trapped liquid compositions. We conducted a series of experiments to reverse the effects of post-entrapment crystallization by re-heating the host crystals to their crystallization temperature. For these experiments we used plagioclase crystals separated from a single Gorda Ridge lava. The crystallization temperature for these crystals was determined by a set of incremental re-heating experiments to be ∼1240–1260° C. The inclusions are primitive, high Ca-Al basaltic melts, saturated with plagioclase, olivine and Al-rich chromite at low pressure. The inclusion analyses can be linked to the host lava composition by low pressure fractionation. The major element composition of the re-homogenized melt inclusions within each crystal is relatively constant. However, the incompatible element analyses have extremely wide ranges. The range of La/Sm and Ti/Zr from inclusions analyzed from a single sample from the Gorda Ridge exceeds the range reported for lavas sampled from the entire ridge. The pyroxene compositions predicted to be in equilibrium with the melt inclusion trace element signature cover much of the range represented by pyroxenes from abyssal peridotites. The volumetric proportions of the magmas entering the base of the crust can be evaluated using frequency distribution of melt inclusion compositions. This distribution suggests that the array of magmas was skewed towards the more depleted compositions, with little evidence for an enriched component in this system. This pattern is more consistent with a dynamic flow model of the mantle or of a passive flow model where the melts produced in the peripheral areas of the melting regime were not focused to the ridge. Received: 5 January 1995 / Accepted: 13 June 1995  相似文献   

6.
The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Smcn0.3, 87Sr/86Sr=0.70235–0.70242, and 206Pb/204Pb=18.22–18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Smcn1.8, 87Sr/86Sr=0.70245–0.70260, and 206Pb/204Pb=18.73–19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with plums of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the plums, initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the plums and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the plums could evolve to their more evolved isotopic composition after a period of 1.5–2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a less-depleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as plums throughout the upper mantle, transported from depth by mantle plumes.  相似文献   

7.
In this paper, we discuss the formation conditions of rhyolites and results of their interaction with later portions of basic magmas on the basis of the investigation of melt and fluid inclusions in minerals from a rhyolite xenolith and host neovolcanic basalts of the Cleft segment of the Juan de Fuca Ridge. In terms of bulk chemistry and the compositions of melt inclusions in pyroxene and olivine phenocrysts, the basic rocks of the southern part of this segment are typical MOR basalts. Their olivine, clinopyroxene, and plagioclase crystallized at temperatures of 1160–1280°C and a pressure range between 20 and 100 MPa. The xenolith is a leucocratic rock with negligible amounts of mafic minerals, which clearly distinguishes it from the known occurrences of silicic rocks in the rift valleys of MOR. The rhyolite melt crystallized at temperatures of 900–880°C. The final stages of rhyolite melt crystallization at temperatures of 780–800°C were accompanied by the release of a saline aqueous fluid with high chloride contents. Based on the geochemical characteristics of melt inclusions and melting products, it can be suggested that the magmatic melt was produced by melting of metamorphosed oceanic crust within the Cleft segment under the influence sof saline aqueous fluid trapped in the pores and interstices of the rock. The rock represented by the xenolith is a late differentiation product of such melts. The ultimate products of silicic melt fractionation show high volatile contents: H2O > 3.0 wt %, Cl ~ 2.0 wt %, and F ~ 0.1 wt %. The interaction of the xenolith with the host basaltic melt occurred at temperatures equal or slightly higher than those of ferrobasalt melts (1190–1180°C). During ascent the xenolith occurred for a few tens of hours in high-temperature basic magma, and diffusion exchange between the basaltic and silicic melts was very minor.  相似文献   

8.
In response to at least one change in the direction of sea-floor spreading, the Juan de Fuca Ridge and Gorda Rise have rotated approximately 20° clockwise with respect to geographic North during the last 10 million years. The rotation histories of these ridge segments have been determined from the ages and azimuths of linear magnetic anomalies within the corresponding “zed” patterns. In each case the rotations were systematic and occurred between about 9 and 3 Ma B.P. Significantly, the rotations occurred in a number of discrete stages during each of which the rates of rotation were approximately constant; rotation rates range from 1.3 to 8.6°/Ma.Though the rotation histories of these spreading centers are generally similar, some changes in the rotation rates are not synchronous, and until 3 Ma B.P., the Juan de Fuca Ridge had a 5–10° more easterly trend than the Gorda Rise. For the last 3 million years both ridge segments have had stable trends near 19°E of North.On a time scale of millions of years, ridge reorientation may be regarded as a continuous process wherein the rotation of the spreading center results from asymmetric spreading. Discontinuous changes in the degree of asymmetric spreading are required to account for observed changes in rotation rate. If the orthogonal arrangement of spreading centers and transform faults represents a least-work condition in which the resistance to plate motions is minimized by minimizing the lengths of ridge segments, as suggested previously, and if the rate at which the system seeks to reduce the total resistance after a change in spreading direction is maximum, it follows that the degree of asymmetric spreading, and hence the rate of rotation, are inversely proportional to the resistance to motion on transform faults. Thus, the various stages of rotation of the Juan de Fuca Ridge and Gorda Rise probably reflect different stress conditions on the Blanco Fracture Zone.It is difficult to account for the different trends of the Juan de Fuca Ridge and Gorda Rise largely because the Gorda Block is not behaving as a rigid plate and because the Mendocino Fracture Zone is not a transform fault. However, the fact that the Gorda Rise has had a stable trend for 3 million years, in spite of the deformation of an adjacent plate, suggests that the motion of the Gorda Block is not controlled by the motions of the vast Pacific and North American Plates, and that the Driving mechanism is “felt” directly at the ridge.  相似文献   

9.
Hydrothermal vent fluids from Middle Valley, a sediment-covered vent field located on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186-281 °C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2 + C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low temperature regions during recharge) as well as from thermogenic processes in higher temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and confirm that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower temperature fluids.  相似文献   

10.
The abundance and 13C/12C ratios of carbon were analyzed in basaltic glass from twenty locations along the Juan de Fuca Ridge using a 3-step combustion/extraction technique. Carbon released during the first two combustion steps at 400-500 degrees C and 600-650 degrees C is interpreted to be secondary, and only the carbon recovered during a final combustion step at approximately 1200 degrees C is thought to be indigenous to the samples. For carbon released at approximately 1200 degrees C, glasses analyzed as 1-2 mm chips contained 23-146 ppm C with delta 13C values of -4.8 to -9.3%, whereas samples crushed to 38-63 microns or 63-90 microns yielded 56-103 ppm C with delta 13C values of -6.1 to -9.2%. The concentrations and isotopic compositions of the primary carbon dissolved in the glasses and present in the vesicles are similar to those previously reported for other ocean-ridge basalts. The Juan de Fuca basaltic magmas were not in equilibrium with respect to carbon when they erupted and quenched on the sea floor. Evidence of disequilibrium includes (1) a large range of carbon contents among glasses collected at similar depths, (2) a highly variable calculated carbon isotopic fractionation between melt and vapor determined by comparing crushed and uncrushed splits of the same sample, and (3) a lack of correlation between vesicle abundance, carbon concentration, and depth of eruption. Variations in carbon concentration and delta 13C ratios along the ridge do not correlate with major element chemistry. The observed relationship between carbon concentrations and delta 13C values may be explained by late-stage, variable degrees of open-system (Rayleigh-like) degassing.  相似文献   

11.
The Juan de Fuca Ridge is a hydrothermally active, sediment covered, spreading ridge situated a few hundred kilometres off the west coast of North America in the northeastern Pacific Ocean. Sediments from seven sites drilled during the Ocean Drilling Program (ODP) Legs 139 and 168 were analyzed for total hydrolyzable amino acids (THAA), individual amino acid distributions, total organic C (TOC) and total N (TN) contents. The aim was to evaluate the effects of hydrothermal stress on the decomposition and transformation of sedimentary amino acids. Hydrolyzable amino acids account for up to 3.3% of the total organic C content and up to 12% of the total N content of the upper sediments. The total amounts of amino acids decrease significantly with depth in all drilled holes. This trend is particularly pronounced in holes with a thermal gradient of around 0.6 degrees C/m or higher. The most abundant amino acids in shallow sediments are glycine, alanine, lysine, glutamic acid, valine and histidine. The changes in amino acid distributions in low temperature holes are characterized by increased relative abundances of non-protein beta-alanine and gamma-aminobutyric acid. In high temperature holes the amino acid compositions are characterized by high abundances of glycine, alanine, serine, ornithine and histidine at depth. D/L ratios of samples with amino acid distributions similar to those found in acid hydrolysates of kerogen, indicate that racemization rates of amino acids bound by condensation reactions may be diminished.  相似文献   

12.
13.
Lithology and Mineral Resources - Clay minerals in Holocene–Pleistocene sediments from Hole 858B DSDP drilled at 20 m from the black smoker in the Dead Dog hydrothermal field, axial valley of...  相似文献   

14.
15.
Geochemical data from melt inclusions in olivine phenocrysts in a picritic basalt from the Siqueiros Transform Fault on the northern East Pacific Rise provide insights into the petrogenesis of mid-ocean ridge basalts (MORB). The fresh lava contains ~10% of olivine phenocrysts (Fo89.3-91.2) and rare, small (<1 mm) plagioclase phenocrysts with subhedral to irregular shapes with a range of compositions (An80-90, An57-63). Melt inclusions in olivine phenocrysts are glassy, generally rounded in shape and vary in size from a few to ~200 µm. Although most of the inclusions have compositions that are generally consistent with being representative of parental melts for the pillow-rim glasses, several inclusions are clearly different. One inclusion, which contains a euhedral grain of high-Al, low-Ti spinel, has a composition unlike any melt inclusions previously described from primitive phenocrysts in MORB. It has a very high Al2O3 (~20 wt%), very low TiO2 (~0.04 wt%) and Na2O (~1 wt%) contents, and a very high CaO/Na2O value (~14). The glass inclusion is strongly depleted in all incompatible elements (La =0.052 ppm; Yb =0.34; La/Sm(n) ~0.27), but it has large positive Sr and Eu anomalies (Sr/Sr* ~30; Eu/Eu* ~3) and a negative Zr anomaly. It also has low S (0.015 wt%) and relatively high Cl (180 ppm). We suggest that this unusual composition is a consequence of olivine trapping plagioclase in a hot, strongly plagioclase-undersaturated magma and subsequent reaction between plagioclase and the host olivine producing melt and residual spinel. Two other melt inclusions in a different olivine phenocryst have compositions that are generally intermediate between 'normal' inclusions and the aluminous inclusion, but have even higher CaO and Sr contents. They are also depleted in incompatible elements, but to a lesser degree than the aluminous inclusion, and have smaller Sr and Eu anomalies. Similar inclusions have also been described in high-Fo olivine phenocrysts from Iceland and northern Mid-Atlantic Ridge. We suggest that the compositions of these inclusions represent assimilation of gabbroic material into the hot primitive magma. The localised nature of this assimilation is consistent with it occurring within a crystal mush zone where the porosity is high as primitive magmas pass through earlier formed gabbroic 'cumulates'. In such an environment the contaminants are expected to have quite diverse compositions. Although the interaction of primitive melts with gabbroic material may not affect the compositions of erupted MORB melts on a large scale, this process may be important in some MORB suites and should be accounted for in petrogenetic models. Another important implication is that the observed variability in melt inclusion compositions in primitive MORB phenocrysts need not always to reflect processes occurring in the mantle. In particular, inferences on fractional melting processes based on geochemistry of ultra-depleted melt inclusions may not always be valid.  相似文献   

16.
《International Geology Review》2012,54(10):1179-1190
Andesite magmatism plays a major role in continental crustal growth, but its subduction-zone origin and evolution is still a hotly debated topic. Compared with whole-rock analyses, melt inclusions (MIs) can provide important direct information on the processes of magma evolution. In this article, we synthesize data for melt inclusions hosted by phenocrysts in andesites, extracted from the GEOROC global compilation. These data show that melt inclusions entrapped by different phenocrysts have distinct compositions: olivine-hosted melt inclusions have basalt and basaltic andesite compositions, whereas melt inclusions in clinopyroxene and othopyroxene are mainly dacitic to rhyolitic. Hornblende-hosted melt inclusions have rhyolite composition. The compositions of melt inclusions entrapped by plagioclase are scattered, spanning from andesite to rhyolite. On the basis of the compositional data, we propose a mixing model for the genesis of the andesite, and a two-chamber mechanism to account for the evolution of the andesite. First, andesite melt is generated in the lower chamber by mixing of a basaltic melt derived from the mantle and emplaced in the lower crust with a felsic melt resulting from partial melting of crustal rocks. Olivine and minor plagioclase likely crystallize in the lower magma chamber. Secondly, the andesite melt ascends into the upper chamber where other phenocrysts crystallize. According to SiO2-MgO diagrams of the MIs, evolution of the andesite in the upper chamber can be subdivided into two distinct stages. The early stage (I) is characterized by a phenocrystal assemblage of clinopyroxene + othopyroxene + plagioclase, whereas the late stage (II) is dominated by crystallization of plagioclase + hornblende.  相似文献   

17.
In volatile-saturated magmas, degassing and crystallisation are interrelated processes which influence the eruption style. Melt inclusions provide critical information on volatile and melt evolution, but this information can be compromised significantly by post-entrapment modification of the inclusions. We assess the reliability and significance of pyroxene-hosted melt inclusion analyses to document the volatile contents (particularly H2O) and evolution of intermediate arc magmas at Volcán de Colima, Mexico. The melt inclusions have maximal H2O contents (≤4 wt%) consistent with petrological estimates and the constraint that the magmas crystallised outside the amphibole stability field, demonstrating that pyroxene-hosted melt inclusions can preserve H2O contents close to their entrapment values even in effusive eruptions with low effusion rates (0.6 m3 s?1). The absence of noticeable H2O loss in some of the inclusions requires post-entrapment diffusion coefficients (≤1 × 10?13 m2 s?1) at least several order of magnitude smaller than experimentally determined H+ diffusion coefficient in pyroxenes. The H2O content distribution is, however, not uniform, and several peaks in the data, interpreted to result from diffusive H2O reequilibration, are observed around 1 and 0.2 wt%. H2O diffusive loss is also consistent with the manifest lack of correlations between H2O and CO2 or S contents. The absence of textural evidence supporting post-entrapment H2O loss suggests that diffusion most likely occurred via melt channels prior to sealing of the inclusions, rather than through the host crystals. Good correlation between the melt inclusion sealing and volcano-tectonic seismic swarm depths further indicate that, taken as a whole, the melt inclusion population accurately records the pre-eruptive conditions of the magmatic system. Our data demonstrate that H2O diffusive loss is a second-order process and that pyroxene-hosted melt inclusions can effectively record the volatile contents and decompression-induced crystallisation paths of vapour-saturated magmas.  相似文献   

18.
We describe and model a potential re-equilibration process that can affect compositions of melt inclusions in magnesian olivine phenocrysts. This process, referred to as “Fe-loss”, can operate during natural pre-eruptive cooling of host magma and results in lower FeOt and higher MgO contents within the initially trapped volume of inclusion. The extent of Fe-loss is enhanced by large temperature intervals of magma cooling before eruption. The compositions of homogenised melt inclusions in olivine phenocrysts from several subduction-related suites demonstrate that (1) Fe-loss is a common process, (2) the maximum observed degree of re-equilibration varies between suites, and (3) within a single sample, variable degrees of re-equilibration can be recorded by melt inclusions trapped in olivine phenocrysts of identical composition. Our modelling also demonstrates that the re-equilibration process is fast going to completion, in the largest inclusions in the most magnesian phenocrysts it is completed within 2 years. The results we obtained indicate that the possibility of Fe-loss must be considered when estimating compositions of parental subduction-related magmas from naturally quenched glassy melt inclusions in magnesian olivine phenocrysts. Compositions calculated from glassy inclusions affected by Fe-loss will inherit not only erroneously low FeOt contents, but also low MgO due to the inherited higher Mg##of the residual melt in re-equilibrated inclusions. We also demonstrate that due to the higher MgO contents of homogenised melt inclusions affected by Fe-loss, homogenisation temperatures achieved in heating experiments will be higher than original trapping temperatures. The extent of overheating will increase depending on the degree of re-equilibration, and can reach up to 50 °C in cases where complete re-equilibration occurs over a cooling interval of 200 °C. Received: 2 November 1998 / Accepted: 27 September 1999  相似文献   

19.
The content and distribution of mercury in Holocene–Upper Pleistocene turbidites, hemipelagic sediments intercalating therein, as well as basement basalts are studied. Samples of sediments were taken from the core of Holes 858A, 858B, 858C, 858D, and 858F. Basalt samples were taken from Holes 858F and 858G drilled during Leg 139 ODP in the Middle Valley (Juan de Fuca Ridge) in the Dead Dog hydrothermal field with a high heat flow (4–20 W/m2) and numerous vents with temperature ranging from 234 to 276°C. Samples of sediments and basalts with the background Hg content were taken from the core of Holes 855A, 855C, and 855D are located beyond the hydrothermal system in the base of the fault scarp on the eastern Middle Valley. In rocks, the content of Hg and its occurrence form were determined by the atomic absorption spectrometry with thermal atomization method; the chemical composition, by the XFA and ICP-MS methods. Sections of the sedimentary cover and basalt basement are marked by an alternation of “layer cake” type units with low and high contents of Hg. Mercury occurs in rocks in the physically adsorbed and mineral forms. The Hg concentration in some parts of the sedimentary section is anomalously high: up to 9696 ppb in Hole 858B and 7260 ppb in Hole 858C. In metalliferous sediments, the Hg content is 3130 ppb. Its maximum content (up to 23200 ppb) is recorded in basalts.  相似文献   

20.
The strontium isotopic compositions have been determined for twelve tholeiitic basalts dredged from the Gordo and Juan de Fuca Rises. Sr87/Sr86 ratios range from 0.7012 to 0.7031 and average 0.7026. These data, combined with other data from the East Pacific Rise indicate that tholeiite basalts being erupted along the active rises, in the Pacific Ocean, contain less radiogenic Sr87 than basalts erupted on the islands. These isotopic differences between the ocean-ridge tholeiite and the more alkali island basalts indicate that variations in Rb/Sr have persisted in the mantle for billions of years. The possible origins and distribution of these heterogeneties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号