首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

2.
This paper addresses the distribution of heavy metals (Co, Ni, Cu, Zn, Cd, Sn, Sb, Pb, and Bi) as well as Si, Al, Fe, and Mn in the surface (0–2 cm) layer of bottom sediments of the Kara Sea. The contents of these elements are determined in each of the previously distinguished facies-genetic types of terrigenous sediments: fluvial, glacial, estuarine, shallow water–marine, “background” marine, and relict sediments. It is shown that these types reflect the modern conditions of accumulation of river discharge material, which forms fans of two greatest Siberian rivers, Ob and Yenisei. The main stages are distinguished in heavy metal accumulation. The first stage is related to the avalanche sedimentation of terrigenous sediments in the estuary and characterized by the elevated contents of Co, Ni, Cu, Zn, Cd, Sb, and Bi. The second stage reflects the mechanical differentiation of sedimentary material by waves and bottom currents in a shallow-water sea part adjacent to the estuarine zone, with accumulation of Pb- and Sn-bearing “heavy” ore minerals. The deepwater background terrigenous–marine sediments accumulate mainly Ni, Zn, and Cd, as well as Mn. The relict sediments differ in the high contents of Si, Mn, and Sn.  相似文献   

3.
Core and surface sediment samples were collected from three sub-lakes ( Lake Nanyang, Lake Dushan and Lake Zhaoyang) in the Lake Nansi Basin, Shandong Province. In order to reveal the characteristics of spatial and historical distribution of heavy metals in different sublakes of the Upper Lake Nansi, heavy metal (As, Cr, Cu, Hg, K, Mn, Ni, Pb, Zn, Al, Fe, Ti and V) concentrations of sediment samples were investigated. Based on the activity of^137Cs in the sediments, the modem accumulation rate of Lake Nansi sediments is 3.5 mm/a. Our results show that the whole Upper Lake Nansi has been already polluted by heavy metals, among which Lake Nanyang has been polluted seriously by mercury, as well as by lead and arsenic, while Lake Dushan has been most seriously polluted by lead and arsenic. Historical variation of heavy metal (Cr, Cu, K, Ni, Zn, A1, Fe, Ti and V) concentrations shows an abrupt shift in 1962, resuiting in a division of two periods: from 1957 to 1962 when metal enrichment increased with time, and from 1962 to 2000 when it decreased with time, while that of some anthropogenic elements such as Hg, Pb and Mn tend to increase toward the surface. However, the variation trend of As in the sediments is different from that of Hg, Pb and Mn, with its maximum value appearing in 1982. Since 1982 the concentrations of As have decreased due to the forbidden use of arsenite pesticides. This variation trend revealed changes in manner of human activity (coal combustion, waste discharges from both industries and urban sewage ) within the catchment during different periods.  相似文献   

4.
福建龙海土壤重金属含量特征及影响因素研究   总被引:1,自引:0,他引:1  
为有效预防土壤重金属生态风险,以福建龙海市表层土壤为研究对象,应用经典统计分析、随机森林等方法,研究重金属元素含量特征及其影响因素。结果表明:(1)第四纪冲洪(海)积成因水稻土中多数重金属元素含量较高;(2)燕山期中酸性岩风化形成的残坡积红壤中重金属元素活动态含量较高;(3)As、Cu、Ni形态含量与全量相关性较好,而Cd、Cr、Hg的多数形态含量与全量相关性较差;(4)除元素全量外,土壤有机质对弱有机结合态重金属(不包括Ni、Pb元素)以及离子交换态、碳酸盐结合态Cd、Zn有重要影响,阳离子交换量对各形态Ni,(Fe×Al)/Si对各形态Cu具有重要影响,而土壤成因、土壤类型对重金属形态组成的影响较小。研究表明土壤重金属形态组成及其富集区与其全量不尽一致,土壤重金属生态风险评价应考虑土壤重金属形态分布特征。  相似文献   

5.
为探讨渤海西部在多重环境因素变化下沉积物中重金属的环境地球化学行为,分析了渤海西部44个站位表层沉积物样品中8种重金属元素含量,研究了重金属元素的分布特征、环境影响因素及其生态风险。结果表明,渤海西部表层沉积物中As、Cu、Cd、Cr、Hg、Ni、Pb、Zn的平均含量分别为117 mg/kg、255 mg/kg、014 mg/kg、689 mg/kg、0037 mg/kg、303 mg/kg、223 mg/kg、757 mg/kg;Cu、Cr、Ni、Zn含量与有机碳含量、小于63 μm细粒沉积物呈显著正相关,其在表层沉积物中的分布明显受到有机质含量和沉积物粒径的控制,而As、Hg分布没有明显受到有机质含量的影响。富集系数显示,Cr、Ni、Pb和Zn为无富集,Cu、As为轻度富集,Cd和Hg为中度富集。与多种背景值和一致性沉积物质量基准相比较,渤海西部表层沉积物Pb、Cd的含量超出背景值,而Cu、Zn、Ni、Cr、As、Hg含量也存在一定的异常,但其含量水平引发有害生物效应的可能性不大,尽管重金属元素含量偏高,但生态风险较小。  相似文献   

6.
Sequential core sediments from northwestern Taihu Lake in China were analyzed for grain size, organic carbon and heavy metal content. The sediments are composed of organic-poor clayey-fine silts. The chemical speciations of Cu, Fe, Mn, Ni, Pb, and Zn were also analyzed using the BCR sequential extraction procedure. Cu, Fe, Ni, and Zn are mainly associated with the residue fraction; Mn is concentrated mainly in exchangeable/carbonate fraction and residue fraction; and Pb mainly in Fe/Mn oxide fraction and organic/sulfide fraction. The exchangeable/carbonate fractions of Cu, Fe, Ni, Zn and Pb are lower. The fractions of Ni, Pb and Zn bound to the Fe/Mn oxide have significant correlations with reducible Mn; the organic/sulfide fractions of Cu, Mn, Ni, Pb, and Zn have significant correlations with TOC. The extractable fractions of Cu, Mn, Ni, Pb, and Zn are high at the top 4 cm of the core sediments as compared to those in the deeper layers, showing the anthropogenic input of heavy metals is due to rapid industrial development. The heavy metal pollution history of the sediments has been recorded since the late 1970s, determined by the result of ^137Cs dating.  相似文献   

7.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

8.
Sediments of the Lagoa Vermelha (Red Lake), situated in the Ribeira Valley, southeastern Brazil, are made of a homogeneous, organic-rich, black clay with no visible sedimentary structures. The inorganic geochemical record (Al, As, Ba, Br, Co,Cs, Cr, Fe, Mn, Ni, Rb, Sc, Sb, V, Zn, Hg and Pb) of the lake sediments was analyzed in a core spanning 2430 years. The largest temporal changes in trace metal contents occurred approximately within the last 180 years. Recent sediments were found to be enriched in Pb, Zn, Hg, Ni, Mn, Br and Sb (more than 2-fold increase with respect to the “natural background level”). The enhanced accumulation of Br, Sb, and Mn was attributed to biogeochemical processes and diagenesis. On the other hand, the anomalous concentrations of Pb, Zn, Hg and Ni were attributed to pollution. As Lagoa Vermelha is located in a relatively pristine area, far removed from direct contamination sources, the increased metal contents of surface sediments most likely resulted from atmospheric fallout. Stable Pb isotopes provided additional evidence for anthropogenic contamination. The shift of 206Pb/207Pb ratios toward decreasing values in the increasingly younger sediments is consistent with an increasing contribution of airborne anthropogenic lead. In the uppermost sediments (0-10 cm), the lowest values of the 206Pb/207Pb ratios may reflect the influence of the less radiogenic Pb from the Ribeira Valley District ores (206Pb/207Pb between 1.04 and 1.10), emitted during the last 50 years.  相似文献   

9.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

10.
This paper provides data on variations in the contents of As, Sb, Ni, V, Pb, Cu, Cr, Au, Zn, Sc, and Al, measured in the thalli of a saxicolous lichen species,Xanthoria calcicola Ochsner s.l., collected in northeastern Sicily, near an industrial zone and along a belt crossing areas of known ores containing sulfides of heavy metals. A total of 91 lichen samples were collected on roof tiles (39) and on rocks (52). In the industrial zone, analysis of lichen thalli revealed high contents of nickel and vanadium, decreasing at increasing distances from the source of contamination. The results have also revealed the versatility ofXanthoria calcicola in geochemical prospecting for heavy metals such as Pb, Zn, As, Au, Sb, Ni, V, and Cu. The contents of these elements in the analyzed lichens highlight the same geochemical associations observed in prospecting surveys on samples of river sediments and identify similar anomalies. Interpretation of data in terms of enrichment factors (EFs) turned out to be particularly useful.  相似文献   

11.
黄河下游山东段沿岸土壤中重金属元素异常的成因   总被引:9,自引:1,他引:8  
山东省多目标区域地球化学调查发现,沿黄河两岸分布有As、Cd、Cr、Cu、Pb、Zn、Ni等重金属元素异常,这类异常衬度不大,并多沿河呈不连续分布。研究结果表明,异常区土壤重金属元素的含量与SiO2、Al2O3Fe2O3等常量组分间具有显著的相关性,多数微量重金属元素随SiO2含量的增加而降低,随Al2O3Fe2O3含量的增加而增加。根据常量组分与土壤质地的密切关系可以推断。土壤质地对重金属元素异常的形成具明显的控制作用。  相似文献   

12.
Partitioning of heavy metals in surface Black Sea sediments   总被引:1,自引:0,他引:1  
Bulk heavy metal (Fe, Mn, Co, Cr, Ni, Cu, Zn and Pb) distributions and their chemical partitioning, together with TOC and carbonate data, were studied in oxic to anoxic surface sediments (0–2 cm) obtained at 18 stations throughout the Black Sea. TOC and carbonate contents, and available hydrographic data, indicate biogenic organic matter produced in shallower waters is transported and buried in the deeper waters of the Black Sea. Bulk metal concentrations measured in the sediments can be related to their geochemical cycles and the geology of the surrounding Black Sea region. Somewhat high Cr and Ni contents in the sediments are interpreted to reflect, in part, the weathering of basic-ultrabasic rocks on the Turkish mainland. Maximum carbonate-free levels of Mn (4347 ppm), Ni (355 ppm) and Co (64 ppm) obtained for sediment from the shallow-water station (102 m) probably result from redox cycling at the socalled ‘Mn pump zone’ where scavenging-precipitation processes of Mn prevail. Chemical partitioning of the heavy metals revealed that Cu, Cr and Fe seem to be significantly bound to the detrital phases whereas carbonate phases tend to hold considerable amounts of Mn and Pb. The sequential extraction procedures used in this study also show that the metals Fe, Co, Ni, Cu, Zn and Pb associated with the ‘oxidizable phases’ are in far greater concentrations than the occurrences of these metals with detrital and carbonate phases. These results are in good agreement with the recent studies on suspended matter and thermodynamic calculations which have revealed that organic compounds and sulfides are the major metal carriers in the anoxic Black Sea basin, whereas Fe-Mn oxyhydroxides can also be important phases of other metals, especially at oxic sites. This study shows that, if used with a suitable combination of the various sequential extraction techniques, metal partitioning can provide important information on the varying geological sources and modes of occurrence and distribution of heavy metals in sediments, as well as, on the physical and chemical conditions prevailing in an anoxic marine environment.  相似文献   

13.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

14.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

15.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

16.
Metal fluxes to the sediments of the Moulay Bousselham lagoon,Morocco   总被引:2,自引:0,他引:2  
The metal content in surface sediments (0–2 cm, 26 samples), in a sediment core (120, 1 cm slices), taken from Moulay Bousselham (Morocco) was investigated. Concentrations of Al, Fe, Mn, Pb, Zn, Cu, Ni, Cr, Cd, As, and Hg were evaluated in surface and cored sediments of Moulay Bousselham lagoon. Significantly high concentrations in μg g−1 dw of Pb (31.7–6.2), Zn (758.9–167), Cu (310.7–22), Ni (96–10.5), Cr (113–18.9), Cd (0.84–0.02), As (1–0.1), and Hg (0.61–0.02) were found in sediment samples from Moulay Bousselham lagoon. Calculated enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background], using Al as a normalizer, and correlation matrices showed that metal pollution in Merja Zerga of Moulay Bousselham lagoon was the product of anthropogenic sources, while the metal content in Merja Kehla was of natural origins. The results suggest that a major change in the sedimentary regime of the lagoon, associated with internal trapping and re-distribution of heavy metal, has been occurring in the past few decades. The cause would appear to be the construction of a Nador Canal at the lagoon. Probable effects concentrations (PEC) were often exceeded for heavy metals in the lagoon sediments, especially for Zn, Cu, Ni, and Cr, and four stations, stations MZ-11, MZ-12, MZ-13, MZ-14, MZ-16, and MZ-17, had multiple metals at presumptively toxic levels. These comparisons suggest that sediment metal levels in the river are clearly high and probably pose an environmental risk at some stations. The levels of most of the metals were not greatly enriched, a consideration that is of the utmost importance when contamination issues are at stake. Metal concentrations found in Moulay Bousselham lagoon were comparable to aquatic systems classified as contaminated from other regions of the world.  相似文献   

17.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

18.
朱伯万  薛怀友 《江苏地质》2006,30(3):187-190
对扬中长江漫滩柱状沉积物Cd、Pb、Cu、N i、Cr、Zn重金属垂向变化特征分析,表层20 cm以上,重金属含量普遍较高,表明了人类活动对长江重金属输入量呈现日益增加的趋势。通过重金属与Fe元素作线性回归方程,求得重金属的背景含量。相比而言,表层沉积物重金属含量反映了长江滩涂沉积物已经呈现明显的污染趋势。  相似文献   

19.
In the present study we examined the Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn contamination levels of the soils of Berehove, a small city in West-Ukraine. As a first step we determined the spatial distribution of the heavy metal contents of the urban soils; then, by studying the land use structure of the city and by statistical analysis we identified the major sources of contamination; we established a matrix of correlations between the heavy metal contents of the soils and the different types of land use; and finally, we drew a conclusion regarding the possible origin(s) of these heavy metals. By means of multivariate statistical analysis we established that of the investigated metals, Ba, Cd, Cu, Pb and Zn accumulated in the city’s soils primarily as a result of anthropogenic activity. In the most polluted urban areas (i.e. in the industrial zones and along the roads and highways with heavy traffic), in the case of several metals (Ba, Cd, Cu, Pb, Zn) we measured concentration levels even two or three times higher than the threshold limit values. Furthermore, Cr, Fe and Ni are primarily of lithogenic origin; therefore, the soil concentrations of these heavy metals depend mainly on the chemical composition of the soil-forming rocks.  相似文献   

20.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号