首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boundary shear stress and flow variability due to its interaction with main flow and secondary currents were investigated under conditions that extend previous research on trapezoidal channels. Secondary currents that scale with the flow depth were found over the entire width in all experiments. These findings contradict the widespread perception that secondary currents die out at a distance of 2.5 times the flow depth from the bank, a perception which is largely based on experiments with smooth boundaries. The reported results indicate that a stable pattern of secondary currents over the entire channel width can only be sustained over a fixed horizontal bed if the bed's roughness is sufficient to provide the required transverse oscillations in the turbulent shear stresses. Contrary to laboratory flumes, alluvial river bed always provide sufficient roughness. The required external forcing of this hydrodynamic instability mechanism is provided by the turbulence-generated near-bank secondary currents. The pattern of near-bank secondary currents depends on the inclination and the roughness of the bank. In all configurations, secondary currents result in a reduction of the bed shear stress in the vicinity of the bank and a heterogeneous bank shear stress that reaches a maximum close to the toe of the bank. Moreover, these currents cause transverse variability of 10–15% for the streamwise velocities and 0.2u*2–0.3u*?2 for the bed shear stress. These variations are insufficient to provide the flow variability required in river restoration projects, but nevertheless must be accounted for in the design of stable channels.  相似文献   

2.
This paper addresses the spatial and temporal patterns of drivers for sediment dynamics in coastal areas. The basic assumption is that local processes are dominating. The focus is put on the bed shear stress in the southern part of North Sea giving the basic control for deposition–sedimentation and resuspension–erosion. The wave-induced bed shear stress is formulated using a model based on the concept that the turbulent kinetic energy associated with surface waves is a function of orbital velocity, the latter depending on the wave height and period, as well as on the water depth. Parameters of surface waves are taken from simulations with the wave spectrum model WAM (wave model). Bed shear stress associated with currents is simulated with a 3D primitive equation model, Hamburg Shelf Ocean Model. Significant wave height, bed shear stress due to waves and currents, is subjected to empirical orthogonal functions (EOF) analysis. It has been found that the EOF-1 of significant wave height represents the decrease of significant wave height over the shallows and, due to fetch limitation, along the coastlines. Higher order modes are seesaw-like and, in combination, display a basin-scale rotational pattern centred approximately in the middle of the basin. Similar types of variability is also observed in the second and third EOF of bed shear stress. Surface concentrations of suspended matter derived from MERIS satellite data are analysed and compared against statistical characteristics of bed shear stress. The results show convincingly that the horizontal distribution of sediment can, to a larger extent, be explained by the local shear stress. However, availability of resuspendable sediments on the bottom is quite important in some areas like the Dogger Bank.  相似文献   

3.
4.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

5.
Channel curvature produces secondary currents and a transverse sloping channel bed, along which the depth increases towards the outer bank. As a result deep pools tend to form adjacent to the outer bank, promoting bank collapse. The interaction of sediment grains with the primary and secondary flow and the transverse sloping bed also causes meanders to move different grain sizes in different proportions and directions, resulting in a consistent sorting pattern. Several models have been developed to describe this process, but they all have the potential to over‐predict pool depth because they cannot account for the influence of erodible banks. In reality, bank collapse might lead to the development of a wider, shallower cross‐section and any resulting flow depth discrepancy can bias associated predictions of flow, sediment transport, and grain‐size sorting. While bed topography, sediment transport and grain sorting in bends will partly be controlled by the sedimentary characteristics of the bank materials, the magnitude of this effect has not previously been explored. This paper reports the development of a model of flow, sediment transport, grain‐size sorting, and bed topography for river bends with erodible banks. The model is tested via intercomparison of predicted and observed bed topography in one low‐energy (5·3 W m?2 specific stream power) and one high‐energy (43·4 W m?2) study reach, namely the River South Esk in Scotland and Goodwin Creek in Mississippi, respectively. Model predictions of bed topography are found to be satisfactory, at least close to the apices of bends. Finally, the model is used in sensitivity analyses that provide insight into the influence of bank erodibility on equilibrium meander morphology and associated patterns of grain‐size sorting. The sensitivity of meander response to bank cohesion is found to increase as a function of the available stream power within the two study bends. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   

7.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

8.
《国际泥沙研究》2020,35(1):42-56
Submerged vanes are hydrofoils utilized to manage the sediment transport through the river by generating the turbulence in the flow in the form of helical currents.The vanes are placed in the flow with respect to its direction at angle of 10°to 40°.In the current study,an attempt has been made to study the effect of the introduction of vanes in form of rows on parameters like turbulence intensities,Reynolds stresses,turbulent kinetic energy,anisotropy index,and the velocity profile of the flow.It is observed that the profile of variation of turbulence intensities,turbulent kinetic energy,vertical Reynolds stress and velocity over three different marked verticals on a transect are nearly identical whereas a large scatter is observed in the variation of transverse Reynolds stress over the vertical of the aforementioned vertical locations.This observation suggests that flow turbulence is homogeneous over the vertical while scattering in the variation of the transverse Reynolds stress component may be attributed to the presence of secondary currents in the flow.After introducing rows of submerged vanes,the bed turbulence is reduced,hence,helping reduce many scour related phenomenon.It is also observed that a vortex occurred at 0.85 times the height of the vane and the variation of turbulence quantities in the presence of vanes shows the existence of a peak in these quantities.It is observed that as flow moves away from the vane rows,due to the interaction of vortices and the action of vorticity,vortices dampens down and the flow regains homogeneity.After the introduction of submerged vane rows,bed shear stress reduces as fluid from the surface replaces the slow-moving fluid near the bed due to the secondary currents generated by the vanes leading to reduction in the magnitude of turbulence intensities,Reynolds stresses,and turbulent kinetic energy near the bed.The anisotropy index is observed to increase near the bed as induced secondary currents enhanced the turbulence production in the near bed region.All the profiles of parameters obtained in the current study show the existence of a peak or inflexions at a height of 0.85 H from bed(Where,H is the height of the submerged vane).Profiles of parameters obtained in the current study suggest that as the vorticity dampens the vane-generated secondary currents,the scattering in the profiles along the vertical reduces and profiles are observed to regain the variation which they had before the introduction of vane rows,suggesting that flow turbulence has regained its homogeneity.  相似文献   

9.
高速铁路新型路堑基床结构动力响应分析   总被引:3,自引:2,他引:1       下载免费PDF全文
研制出一种新的防排水结构层用以控制膨胀土路基的含水率变化,从而达到对新建云—桂高速铁路膨胀土地段整治的目的。本文采用FLAC~(3D)有限差分软件研究该新型路堑基床结构(基床中设置新型防排水结构层)在列车荷载作用下动力响应规律,并利用现场试验结果对数值研究结果进行验证。研究表明:新型基床中道砟和新型防排水结构层对动应力衰减贡献较大;新型防排水结构层对竖向动应力、剪应力衰减作用明显,增强了基床结构的动力稳定性;新型基床结构能够更有效地控制基床的动位移;新型基床中振动速度和加速度随深度的增加而减小,道砟对振动速度和加速度的衰减作用明显。新型路堑基床结构振动速度和动应力的现场实测与数值分析规律基本一致,且实测值与计算值大小相近。研究成果可为特殊土地区高速铁路基床的设计、施工及其动力响应研究提供参考。  相似文献   

10.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.

In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  相似文献   

12.
Due to changes in relative sea level of order 100 m, the contribution of tides and waves to net bed shear stress in shelf sea regions has varied considerably over the Late Glacial and Holocene. Understanding the spatial and temporal distribution of this ratio leads to a deeper understanding of the erosion and deposition of sediments over the shelf seas throughout this time period. Tidal and wave models are here applied to palaeo time slices of the northwest European shelf seas over the last 12,000 years. The model simulations include a series of sensitivity tests to account for the influence of interannual variability in wind conditions on the resulting bed shear stress. The results show that there has been a significant decrease over the last 12,000 years in shelf-scale mobilisation of coarse sediment. Since there was a lower magnitude of wave orbital velocity penetrating to the sea bed as a result of increasing relative sea level, this reduction in sediment mobilisation was primarily controlled by a shelf-scale decrease in wave-induced bed shear stress over the last 12,000 years. The predictions of mean and residual bed shear stress for the modelled palaeo time slices are a useful tool with which to inform site-selection and subsequent interpretation of sediment cores. In addition, the modelled reconstructions of palaeo tidal range over the shelf seas demonstrates the potential errors associated with assuming a present-day tidal range when correcting palaeo sea-level proxies from their deposited datum (e.g. palaeo mean high water spring tide) to palaeo mean sea level.  相似文献   

13.
Many models of incision by bedrock rivers predict water depth and shear stress from discharge; conversely, palaeoflood discharge is sometimes reconstructed from flow depth markers in rock gorges. In both cases, assumptions are made about flow resistance. The depth–discharge relation in a bedrock river must depend on at least two roughness length scales (exposed rock and sediment cover) and possibly a third (sidewalls). A conceptually attractive way to model the depth–discharge relation in such situations is to partition the total shear stress and friction factor, but it is not obvious how to quantify the friction factor for rough walls in a way that can be used in incision process models. We show that a single flow resistance calculation using a spatially averaged roughness length scale closely approximates the partitioning of stress between sediment and rock, and between bed and walls, in idealized scenarios. Both approaches give closer fits to the measured depth–discharge relations in two small bedrock reaches than can be achieved using a fixed value of Manning's n or the Chézy friction factor. Sidewalls that are substantially rougher or smoother than the bed have a significant effect on the partitioning of shear stress between bed and sidewalls. More research is needed on how best to estimate roughness length scales from observable or measurable channel characteristics. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
The presence of non‐erodible roughness elements on erodible surfaces has the effect of absorbing part of the wind shear stress and thus protecting the erodible surface from wind erosion. This paper examines the shear stress distribution over roughness arrays of varying density, representing the progress of erosion on a bed of erodible and non‐erodible particles. Three‐dimensional numerical simulations, simulating wind flow over a bed of particles covered by roughness elements, were conducted in order to investigate the effect of roughness elements on the shear stress near the surface. The results of these simulations confirm that the erosion of soil by wind is strongly attenuated by the presence of roughness elements on the surface and depends on the geometric properties of the roughness elements. Based on the new numerical results obtained, a refinement of existing theoretical approaches is developed to describe the dependence of the friction velocity upon roughness frontal area and real exposed cover rate. The new formulation proposed will allow a more accurate evaluation of shear stress partitioning as a function of topographic changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.  相似文献   

16.
17.
Bed shear stress in open channel flows is often estimated from the logarithmic vertical velocity profile. However, most measuring devices used in the field do not allow for flow velocity to be measured very close to the bed. The lack of near-bed measurements is a critical loss of information which may affect bed shear stress estimates. Detailed velocity profiles obtained from a field acoustic Doppler velocimeter over three different bed roughnesses clearly show that the inclusion of near-bed points is critical for the estimation of bed shear stress in a shallow river environment. Moreover, the results indicate that using the full flow depth instead of the bottom 20 per cent of the profile generates an underestimation of the shear stress when flow is uniform. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
In extreme tidal environment, occurrences of saltating pebbles have been observed. The ambition to instal hydrokinetic turbines in such environment requires knowledge on the presence of pebbles in saltation in the water column because they can damage the structures. An experimental study is realized in a free-surface flume with no slope and different bed roughnesses as in marine environment. With fast camera the trajectories of hundreds of spherical particles are analysed. Our study deals with saltation in the inertial regime (i.e., large Stokes number) over fixed beds with various roughnesses. In inertial regime, the bed roughness has more influence on the collision process and the trajectory of the particles than for non-inertial motion where viscous forces play a key role. Jump height and length increase with bed roughness, with height increasing quicker than length leading to a more vertical trajectory for higher bed roughness. The vertical restitution coefficient is shown to increase with bed roughness leading to higher jumps. The initiation of the motion is shown to depend on the bed roughness as well. Power laws of the excess shear stress are proposed for jump height and length, taking into account the bed roughness. The dataset and analysis proposed in this study is a key ingredient for developing quantitative models for particle transport.  相似文献   

19.
20.
Accurate evaluation and prediction of bedload transport are crucial in studies of fluvial hydrodynamic characteristics and river morphology.This paper presents a one-dimensional numerical model based on the one-dimensional lateral distribution method(1 D-LDM) and six classic bedload transport formulae that can be used to simulate hydrodynamic characteristics and bedload transport discharge in cross sections.Two gravel-bed rivers,i.e.the Danube River located approximately 70 km downstream from Br...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号