首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
TMI被动微波遥感资料用于地表洪涝特征分析试验   总被引:5,自引:1,他引:5  
星载被动微波遥感资料为云天条件下地表洪涝特征分析提供了可能。微波极化比 (PR)可以有效刻画地表洪涝特征 ,宏观反映地表湿度信息。正演模拟分析结果表明地表粗糙度、地表植被覆盖状况和地表湿度对上行微波亮温有影响 ;TRMM/TMI低频微波通道微波极化比能减弱大气因素的影响 ,清晰反映地表的洪涝特征。合理确定分类阈值 ,对 1 998年长江流域洪涝区进行地表洪涝特征分析 ,可以在TMI像元尺度 ,将洪涝区分类为不同等级。洪涝区分类结果与经过天 -地校验过的机载和星载SAR资料地表洪涝分类实况对比 ,TRMM/TMI低频微波通道微波极化比 1 0GHz的PR1 0和 1 9GHz的PR1 9的分类正确率不低于 75 %。  相似文献   

2.
采用了一种偏振方法来测量土壤湿度,并改进了一种粗糙表面的偏振反射模型。利用该模型对土壤湿度的偏振特性进行了分析与实验,发现该模型模拟数据与实验数据之间存在很强的相关性,进而可以建立该模型中的某些参数与土壤湿度的定量关系,为定量反演土壤湿度提供新的途径。  相似文献   

3.
采用星载微波辐射计AMSR-E的低频C波段(6.925GHz),改进了山区微波辐射传输方程,以中国青藏高原地区为例,研究山区可能产生的多种地形效应对微波辐射特征以及土壤水分反演的影响。结果表明,地形效应使得垂直极化亮温最多衰减达到16K,水平极化的亮温最大增强了18K,土壤水分在地形的影响下将被高估超过最大允许误差4%。最后,利用地形效应模拟模型计算的山区地表有效发射率,为山区土壤水分的反演提出了可行的地形校正方法。  相似文献   

4.
使用高级积分方程模型,模拟多个地表参数条件下的风云三号B星微波成像仪(FY-3B/MWRI)资料。基于模拟数据,分析地表微波辐射特性,利用粗糙地表发射率Qp模型,建立我国西部地区裸露地表土壤湿度反演模型。将该模型用于我国西部地区4个日期(2011年10月8日、10月18日、10月28日和11月8日)的土壤湿度反演,并将反演结果用实测数据进行交叉验证。结果表明:反演土壤湿度与实测土壤湿度的决策系数R2为0.604,均方根误差为0.030 5 cm3/cm3,反演模型具有较高的反演精度。  相似文献   

5.
郑兴明  赵凯  张树文 《遥感学报》2012,16(6):1310-1330
根据离散方法建模垄行结构农田表面微波发射率,与地基多频率微波辐射计实测发射率比较发现:二者之间的平均绝对偏差小于0.01 ,证实了利用离散化方法建模农田表面微波发射率的可行性.在给定条件下不同观测方位角农田表面微波发射率与平坦表面的发射率差值在0.02 与0.05 之间,这说明农田结构微波辐射具有各向异性,行结构对发射率的影响在农田电磁波辐射建模过程中不可忽略.本文分析了不同土壤湿度条件下农田垄行结构可能引起的土壤湿度反演误差,结果表明,土壤湿度变化范围是0.02—0.5 cm3/cm3,垄行结构引起的土壤湿度反演误差为0—0.1 cm3/cm3, 此误差超过了土壤湿度反演的容限值,因此在进行农田参数的遥感提取过程中不可忽略周期性垄行结构对表面发射率的影响.  相似文献   

6.
利用北斗GEO卫星反射信号反演土壤湿度   总被引:3,自引:0,他引:3  
提出了一种基于北斗GEO卫星反射信号的土壤湿度长期连续探测方法,建立了土壤湿度反演模型,给出了信号处理的一般流程,并搭建陆基接收平台进行了验证试验。该方法采用GNSS-R双天线体制接收处理北斗GEO卫星直射和土壤反射信号,在信号同步的基础上提取信号功率并计算土壤反射率,进而根据反演模型得到土壤湿度。以北斗GEO卫星作为信号源,该方法可以在信号处理中省去一般GNSS-R处理过程的定位解算环节,能够实现对固定区域土壤湿度的长期连续观测。试验结果表明,基于北斗GEO卫星反射信号的土壤湿度反演结果在时间和数值上均具有良好的连续性,与土壤湿度参考值相吻合,均方根误差达到0.049,较北斗IGSO和GPS MEO卫星在反演土壤湿度方面性能更优。  相似文献   

7.
光学与微波数据协同反演农田区土壤水分   总被引:1,自引:0,他引:1  
光学和微波协同遥感反演对于提高农田土壤水分遥感反演精度十分重要。本文采用SMEX02数据集,研究了L波段土壤发射率与地表土壤水分之间的关系,分析了地面植被覆盖对L波段土壤发射率与地表水分之关系的影响规律,推导了以L波段土壤发射率和归一化植被指数NDVI为自变量的土壤水分反演模型。研究表明:L波段土壤发射率与地表土壤水分之间的相关性随NDVI的增加而下降。验证结果表明,本文算法相对常规经验算法,土壤水分反演精度明显提高,H极化条件下,土壤水分的反演精度RMSE由0.0553提高到0.0407,相关系数R2由0.70提高到0.81;V极化条件下,反演精度RMSE由0.0452提高到0.0348,相关系数R2由0.79提高到0.86。  相似文献   

8.
被动微波遥感反演土壤水分对应的土壤深度是土壤水分产品真实性检验和应用中必须确定的问题。本研究利用理论模型对影响土壤热采样深度的参数进行了分析。在此基础上,通过回归分析的方法发展了一个估算被动微波遥感土壤热采样深度的统计模型,并通过微波辐射测量实验对模型进行了验证。研究证明,理论模型模拟裸露地表发射率平均误差为0.032,基于理论模型发展的热采样深度统计模型的误差在0.5 cm左右。该统计模型可以通过土壤含水量、温度、质地和观测频率4个较容易获取的参数计算土壤微波辐射的热采样深度,为被动微波遥感土壤水分产品的真实性检验工作中地面土壤水分测量以及土壤水分遥感产品的应用提供参考。  相似文献   

9.
A recent study by Van der Schalie et al. (2015) showed good results for applying the Land Parameter Retrieval Model (LPRM) on SMOS observations over southeast Australia and optimizing and evaluating the retrieved soil moisture (θ in m3 m−3) against ground measurements from the OzNet sites. In this study, the LPRM parameterization is globally updated for SMOS against modelled θ from MERRA-Land (MERRA) and ERA-Interim/Land (ERA) over the period of July 2010–December 2010, mainly focusing on two parameters: the single scattering albedo (ω) and the roughness (h). The Pearson's coefficient of correlation (r) increased rapidly when increasing the ω up to 0.12 and reached a steady state from thereon, no significant spatial pattern was found in the estimation of the single scattering albedo, which could be an artifact of the used parameter estimation procedure, and a single value of 0.12 was therefore used globally. The h was defined as a function of θ and varied slightly for the different angle bins, with maximum values of 1.1–1.3 as the angle changes from 42.5° to 57.5°.This resulted in an average r of 0.51 and 0.47, with a bias (m3 m−3) of −0.02 and −0.01 and an unbiased root mean square error (ubrmse in m3 m−3) of 0.054 and 0.056 against MERRA (ascending and descending). For ERA this resulted in an r of 0.61 and 0.53, with a bias of −0.03 and an ubrmse 0.055 and 0.059. The resulting parameterization was then used to run LPRM on SMOS observations over the period of July 2010–December 2013 and evaluated against SMOS Level 3 (L3) θ and available in situ measurements from the International Soil Moisture Network (ISMN). The comparison with L3 shows that the LPRM θ retrievals are very similar, with for the ascending set very high r of over 0.9 in large parts of the globe, with an overall average of 0.85 and the descending set performing less with an average of 0.74, mainly due to the negative r over the Sahara. The mean bias is 0.03, with an ubrmse of 0.038 and 0.044. In this study there are three major areas where the LPRM retrievals do not perform well: very dry sandy areas, densely forested areas and over high latitudes, which are all known limitations of LPRM. The comparison against in situ measurement from the ISMN give very similar results, with average r for LPRM of 0.65 and 0.61 (0.64 and 0.59 for L3) for the ascending and descending sets, while having a comparable bias and ubrmse over the different networks. This shows that LPRM used on SMOS observations produce θ retrievals with a similar quality as the SMOS L3 product.  相似文献   

10.
为了发展雪水当量物理反演算法,本文对不同散射阶模型——零阶、一阶、多次散射模型进行敏感性试验与分析,结果表明我们必须在前向理论模型和反演模型中考虑多次散射作用。本文采用的多次散射积雪辐射理论模型——双矩阵法(Matrix Doubling)求解辐射传输方程,用致密介质理论模型(DMRT)模拟积雪发射和消光特性,用AIEM模型模拟地表辐射及作为辐射传输方程的边界条件。由于该多次散射积雪辐射理论模型的复杂性,拟发展出简单且高精度的积雪辐射参数化模型,以发展雪水当量物理反演算法。因此,在包括多次散射的积雪理论模型基础上,本文通过建立针对AMSR-E传感器参数设置的积雪辐射模拟数据库,该数据库包含了各种可能的自然积雪和地表特性参数。从而在模拟数据库基础上,本文发展了针对AMSR-E的积雪参数化模型。  相似文献   

11.
Significant advances have been achieved in generating soil moisture (SM) products from satellite remote sensing and/or land surface modeling with reasonably good accuracy in recent years. However, the discrepancies among the different SM data products can be considerably large, which hampers their usage in various applications. The bias of one SM product from another is well recognized in the literature. Bias estimation and spatial correction methods have been documented for assimilating satellite SM product into land surface and hydrologic models. Nevertheless, understanding the characteristics of each of these SM data products is required for many applications where the most accurate data products are desirable. This study inter-compares five SM data products from three different sources with each other, and evaluates them against in situ SM measurements over 14-year period from 2000 to 2013. Specifically, three microwave (MW) satellite based data sets provided by ESA's Climate Change Initiative (CCI) (CCI-merged, -active and -passive products), one thermal infrared (TIR) satellite based product (ALEXI), and the Noah land surface model (LSM) simulations. The in-situ SM measurements are collected from the North American Soil Moisture Database (NASMD), which involves more than 600 ground sites from a variety of networks. They are used to evaluate the accuracies of these five SM data products. In general, each of the five SM products is capable of capturing the dry/wet patterns over the study period. However, the absolute SM values among the five products vary significantly. SM simulations from Noah LSM are more stable relative to the satellite-based products. All TIR and MW satellite based products are relatively noisier than the Noah LSM simulations. Even though MW satellite based SM retrievals have been predominantly used in the past years, SM retrievals of the ALEXI model based on TIR satellite observations demonstrate skills equivalent to all the MW satellite retrievals and even slightly better over certain regions. Compared to the individual active and passive MW products, the merged CCI product exhibits higher anomaly correlation with both Noah LSM simulations and in-situ SM measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号