首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

2.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

3.
 The viscosities of hydrous haplogranitic melts synthesized by hydrothermal fusion at 2 kbar pressure and 800 to 1040° C have been measured at temperatures just above the glass transition and at a pressure of 1 bar using micropenetration techniques. The micropenetration viscometry has been performed in the viscosity range of 109 Pa s to 1012 Pa s. The samples ranged in water content from 0.4 to 3.5 wt%. For samples with up to 2.5 wt% H2O, the water contents have been determined using infrared spectroscopy obtained before and after each viscometry experiment to be constant over the duration of the measurements. Above this water content a measurable loss of water occurs during the viscometry. The viscosity data illustrate an extremely nonlinear decrease in viscosity with added water. The viscosity drops drastically with the addition of 0.5 wt% of water and then shallows out at water contents of 2 wt%. An additional viscosity datum point obtained from the analysis of fluid inclusions in a water-saturated HPG8 confirms a near invariance of the viscosity with the addition of water between 2 and 6 wt%. These measurements may be compared directly with the data of Hess et al. (1995, in press) for the effects of excess alkali and alkaline earth oxides on the viscosity of HPG8 (also obtained at 1 bar). The viscosity of the melts, compared on an equivalent molar basis, increases in the order H2O<(Li2O<Na2O< K2O<Rb2O,Cs2O<BaO<SrO<CaO<MgO< BeO). The extraordinary decrease in melt viscosity with added water is poorly reproduced by the calculation scheme of Shaw (1972) for the range of water contents investigated here. The speciation of water in the quenched glasses can be used to quantify the dependence of the viscosity on hydroxyl content. Considering only the hydroxyl groups as active fluidizers in the hydrous melts the nonlinearity of the viscosity decrease and the difference with the effects of the alkali oxides becomes larger. Consequences for degassing calcalkaline rhyolite are discussed. Received: 17 August 1995/Accepted: 8 January 1996  相似文献   

4.
Segregation veins are common in lava sheets and result from internal differentiation during lava emplacement and degassing. They consist of evolved liquid, most likely replaced by gas-filter pressing from a ∼50% crystallised host lava. Pairs of samples, host lavas and associated segregation veins from the Reykjanes Peninsula (Iceland), Lanzarote (Canary Islands) and the Masaya volcano (Nicaragua) show extreme mineralogical and compositional variations (MgO in host lava, segregation veins and interstitial glass ranges from 8–10 wt%, 3–6 wt%, and to less than 0.01 wt%, respectively). These samples allow the assessment of the internal lava flow differentiation mechanism, since both the parental and derived liquid are known in addition to the last magma drops in the form of late interstitial glasses. The mineralogical variation, mass-balance calculated from major- and trace element composition, and transitional metal partition between crystals and melts are all consistent with fractional crystallisation as the dominant differentiation mechanism. The interstitial glasses are highly silicic (SiO2 = 70–80 wt%) and represent a final product of high-degree (75–97%) fractional crystallisation of olivine tholeiite at a pressure close to one atmosphere. The tholeiitic liquid-line-of-decent and the composition of the residual melts are governed by the K2O/Na2O of the initial basaltic magma. The granitic minimum is reached if the initial liquid has a high K2O/Na2O whereas trondhjemitic composition is the final product of magma with low initial K2O/Na2O. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We have investigated 44Ca self-diffusion in natural diopside single crystals (containing ∼2 atomic % Fe) at temperatures up to 1320 °C (i.e. 30 °C below the nominal melting point). Oxygen fugacity was controlled by gaseous mixtures. Diffusion profiles ranging from ∼50 to 500 nm were analysed by Rutherford Back-Scattering Spectrometry (RBS). The present results are complementary to previous studies, and show that in both synthetic (Fe-poor) and natural (Fe-rich) diopside, there are two different diffusion regimes for Ca with a transition at ∼1230±15 °C. Below this temperature diffusion is characterised by an activation enthalpy of ∼284±10 kJ/mol, while at higher temperatures it increases up to ∼1006±75 kJ/mol. These regimes are proposed to be respectively extrinsic and intrinsic. For the intrinsic regime Ca self-diffusion may involve Ca-Frenkel point defects. These are pairs of a vacancy on a M2 site and a calcium cation on an interstitial (normally unoccupied) site. The concentration of such point defects depends only on temperature, and it is especially important at very high temperatures. The activation enthalpy for intrinsic diffusion may represent the half defect formation enthalpy plus the migration enthalpy for movement through interstitial sites. For the extrinsic regime we propose Ca self-diffusion to involve extrinsic interstitial point defects with concentration proportional to ()–0.19±0.03. We suggest that for both regimes, Ca diffusion involves the well known M3 sites in the octahedral layers, as well as sites in the tetrahedral layers, that we call M4. These sites are especially convenient to explain the observed isotropic diffusion. Increasing concentration of Ca-Frenkel point defects may be related to the onset of premelting, which affects the thermodynamic properties of Fe-“free” diopside above 1250 °C. In the light of the present results, premelting is also expected to occur in natural Fe-bearing diopside and it could strongly influence its thermodynamic and transport properties. Subsequently, in deep upper mantle conditions (T≈1250 °C–1300 °C) where premelting could occur, diffusional cation exchanges with surrounding phases and diffusion controlled creep might be facilitated. Finally, our diffusion data support a previous suggestion that electrical conductivity may be electronic rather than ionic. Received: 17 December 1997 / Revised, accepted: 17 April 1998  相似文献   

6.
The origin of compositional heterogeneities among the magmas parental to mid-ocean ridge basalts (MORB) was investigated using a single rock piece of the olivine-phyric basalt from 43°N, Mid-Atlantic Ridge (AII D11-177). The exceptional feature of this sample is presence of very primitive olivine crystals (90–91 mol% Fo) that are significantly variable in terms of CaO (0.15–0.35 wt%). A population of low-Ca olivine (0.15–0.25 wt% CaO) is also notably distinct from high-Ca olivine population in AII D11-177, and primitive MORB olivine in general, in having unusual assemblage of trapped mineral and glass inclusions. Mineral inclusions are represented by high-magnesian (Mg# 90.7–91.1 mol%) orthopyroxene and Cr-spinel, distinctly enriched in TiO2 (up to 5 wt%, c.f. <1 wt% in common MORB spinel). Glass inclusions associated with orthopyroxene and high-Ti Cr-spinel have andesitic compositions (53–58 wt% SiO2). Compared to the pillow-rim glass and “normal” MORB inclusions, the Si-rich glass inclusions in low-Ca olivine have strongly reduced Ca and elevated concentrations of Ti, Na, K, P, Cl, and highly incompatible trace elements. Strong variability is recorded among glass inclusions within a single olivine phenocrysts. We argue that the observed compositional anomalies are mineralogically controlled, and thus may arise from the interaction between hot MORB magmas and crystal cumulates in the oceanic crust or magma chamber.  相似文献   

7.
Volcanic rocks preserved in the Lampang–Den Chai area in NW Thailand are important components of the giant Paleotethyan igneous belt. Constraining their age and petrogenesis is critical for better understanding their temporal-spatial relationship with the Lancangjiang igneous zone and the Paleotethyan tectonic evolution in SE Asia. The volcanic suite is constituted by intermediate to acid rocks with zircon U–Pb ages of 240.4 ± 1.7 Ma and 240.6 ± 1.9 Ma for the representative andesitic and rhyolitic samples, respectively. Volcanic sequence is dominated by calc-alkaline andesites, dacites and rhyolites. The andesitic and dacitic samples are characterized by high Mg# (37–57) and TiO2 (0.91–1.59 wt%), and can be classified as high-Mg series. They are enriched in LILEs and LREEs and depleted in HFSEs. Representative andesitic samples have 87Sr/86Sr (i) ratios of 0.70398–0.70567, εNd (t) values of +3.6–+3.9, zircon εHf (t) values of +2.8–+8.0 and δ18O values of 7.01–8.11‰, respectively. The rhyolitic samples are characterized by high Mg# (38–70) and low TiO2 (0.25–0.61 wt%). They are enriched in LILEs and LREEs, along with 87Sr/86Sr (i) = 0.70468–0.70645, εNd (t) = +2.0–+4.3 and zircon εHf (t) = +5.7–+13.6. Geochemical signatures suggest that the andesitic and dacitic samples might originate from a newly modified mantle source by slab-derived fluids and recycled sediments, and rhyolitic samples were derived from juvenile mafic crust. It is proposed that the Middle Triassic high-Mg volcanic rocks in the Lampang–Den Chai area formed in response to slab roll-back during transition of tectonic regime from subduction to continental collision between the Sibumasu and Indochina blocks. These rocks constitute part of the Chiang Khong–Lampang–Tak igneous zone, and can northerly link with the Lancangjiang igneous zone and southerly extend to the Chanthaburi, Malaysia and Singapore areas.  相似文献   

8.
 Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ∼7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts ( >∼60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents. Received: 15 June 1995 / Accepted: 13 December 1995  相似文献   

9.
The paper presents data on lechatelierite form suevites of the Daldyn Formation in the Popigai astrobleme. Some of the lechatelierite samples show a complicated structure and contain block of diaplectic quartz glass and dynamic “intrusions” of glasses of types I, II, and III. The glasses of types I and II abound in fluid inclusions and display evidence of partial homogenization with lechatelierite. The glasses of type III are clearly separated from all other glasses but show evidence of dynamic interaction with them in the molten state. Fluid inclusions in the glasses of types I and II are syngenetic but have notably different densities from those of completely liquid or gaseous inclusions at 20°C. As is indicated by cryometric data, the liquid phase of the inclusions is aqueous solution of low salinity (5–8 wt % NaClequiv). The bulk petrochemistry of the glasses of type I characterizes them as highly silicic (96.04 wt % SiO2 on average), with elevated K and Na concentrations (Na2O + K2O = 0.72 wt % on average), with 0.73 wt % Al2O3 (on average) and analytical totals 1.97 wt % less than 100%. The glasses of type II are also rich in SiO2 (91.51 wt % SiO2 on average) but contain a broader spectrum of concentrations of major oxides (totaling 5.53 wt % on average) and deficient analytical totals (by 2.96 wt % on average). The glasses of type III are completely equal to impactites produced by melting gneisses of the Popigai astrobleme. The glasses of type I are interpreted to be the intrusion products of the “early” highly mobile and H2O-rich fluid+melt mixtures, whose protolithic material was K-Na feldspars of the target rocks. The derivation of these melts was associated with the capturing of much silica and water at a highly mobile behavior of K and Na and an inert behavior of Al. The glasses of type II were produced by the extensive mixing of silica and water at the limited involvement of apogneiss melts, and these glasses are sometimes deficient in Al. The glasses of type III are usual mixed apogneiss melts. Excess silica in the glasses of types I and II and their richness in water and deficiency in Al suggest impact anatexis and the selective separation of components during their derivation; the parental fluid-melt mixtures of these glasses were derived from such “hydrous” varieties of the target gneisses as diaphthorized and fractured rocks. The evolution and partial vitrification of lechatelierite and the glasses of types I and II proceeded under residual shock pressures, as follows from data on the dense (from ∼0.5 to 1 g/cm3) aqueous inclusions in these glasses, which suggest that the inclusions were captured in the glasses under pressures from ∼0.8 to 3.3 GPa. It follows that our lechatelierite samples have a complex multistage genesis, and their quenching facilitated the preservation of “intrusions” of various stages of shock melting, including the products of the “early” impact anatexis of the gneisses with the selective separation of components at the active participation of water.  相似文献   

10.
Hydrothermal experiments combined with petrologic observations form the basis for a new two-stage model for the evolution of the pre-eruption Minoan magma chamber at Santorini, Greece. Ninety-nine percent of the erupted volume is two-pyroxene, rhyodacitic magma that had been stored at a temperature of ∼885 °C, based on magnetite-ilmenite and QUILF geothermometry. The rest of the volume is basaltic to andesitic magma, which occurs as <10 cm scoria clasts and as small inclusions in rhyodacite pumices. Petrologic observations show that these magmas mixed at different scales and at different times (i.e., multiple batches of mafic magma). Hydrothermal experiments were carried out on samples of rhyodacite and a mafic scoria in order to determine magma storage conditions and the mixing history of the two magmas. At 885 °C, the rhyodacite must have been stored at water-saturated pressures of ∼50 MPa, based on its phase assemblage, matrix-glass composition, and crystal content. However, glass inclusions inside rhyodacitic plagioclase phenocrysts contain more than 6 wt% H2O, indicating they formed at pressures >200 MPa. In addition, the composition of the plagioclase hosts (An56 ± 6) of the inclusions require temperatures of 825 ± 25 °C at pressures >200 MPa. This demonstrates that the Minoan rhyodacitic magma underwent a two-stage evolution, first crystallizing at ∼825C and >200 MPa, and then rinsing to a shallow ∼50 MPa storage region with a concomitant rise in temperature to ∼885 °C. We suggest that the episodic intrusion of mafic magmas provided the necessary heat and perhaps contributed to the ascent of the magma to shallow crustal depths where it reequilibrated before the cataclysmic eruption. Phase equilibria suggest that much of the heating of the rhyodacite occurred in the shallow storage region. Thermal budget calculations suggest that the rhyodacite magma could have been heated by intrusions of basalt rising at reasonable upwelling rates and injected into the storage zone over several hundred years. Preservation of amphibole in the mafic scoria indicate that injection of mafic magma continued up until days before the cataclysmic eruption, perhaps triggering the event. Received: 30 September 1997 / Accepted: 5 October 1998  相似文献   

11.
Chichi-jima, Bonin Islands, consists of dominant Eocene submarine volcanic rocks, comprising boninites, andesites and dacites, and subordinate sedimentary rocks. The dacites occur frequently in breccias and pillows overlying a boninite pillow lava sequence. The boninite pillows are intruded by a multiple dike, in which a core boninite is chilled against outer dacites. A density-stratified chamber may have been capped by a dacite magma. The dacites, which can be divided into quartz dacite and quartz-free dacite, are differentiates from the boninite-forming magmas, because they vary continuously in composition from boninites through andesites. The quartz dacites, corresponding to rhyolite in SiO2, are lower in Na2O and K2O than most orogenic dacites. Some of the dacites are characterized by ferropigeonite (Wo7–16En23–39Fs68-54) phenocrysts and are clearly ferrodacite, producing variable amounts of Fs-rich normative pyroxenes. The relation of SiO2 to total FeO/MgO ratio indicates that many of both types of dacites, with glasses in boninites, are enriched in total FeO despite the strong calc-alkalic affinity of boninites. The crystallization temperature of ferropigeonite with Mg value 30 in a quartz dacite is estimated to be 900° C and that in a quartz-free dacite to be 1050° C, which are unusually high for differentiated silicic rocks. Some Chichi-jima rocks are fresh, having a low ratio of Fe2O3 to FeO. On the basis of the experimental study of magmatic ferric-ferrous equilibria at 1 bar, the oxygen fugacities are calculated as 10–13.6 bars at 900° C for a ferropigeonite quartz dacite and 10–8.9 bars at 1200° C for a boninite with the lowest Fe3+/Fe2+. Both values lie below the quartz-fayalite-magnetite buffer line. The boninite series volcanic rocks have preserved low oxygen fugacities as well as high temperatures until the latest differentiation stage. The ferropigeonite phenocrysts have crystallized from the dacite magmas under the conditions of moderately high temperatures, very low oxygen fugacities and high total FeO and SiO2 concentrations.  相似文献   

12.
Melt inclusions were investigated in olivine phenocrysts from the New Caledonia boninites depleted in CaO and TiO2 and enriched in SiO2 and MgO. The rocks are composed of olivine and pyroxene phenocrysts in a glassy groundmass. The olivine phenocrysts contain melt inclusions consisting of glass, a fluid vesicle, and daughter olivine and orthopyroxene crystals. The daughter minerals are completely resorbed in the melt at 1200?C1300°C, whereas the complete dissolution of the fluid phase was not attained in our heating experiments. The compositions of reheated and naturally quenched melt inclusions, as well as groundmass glasses were determined by electron microprobe analysis and secondary ion mass spectrometry. Partly homogenized melts (with gas) contain 12?C16 wt % MgO. The glasses of inclusions and groundmass are significantly different in H2O content: up to 2 wt % in the glasses of reheated inclusions, up to 4 wt % in naturally quenched inclusions, and 6?C8 wt % in groundmass glasses. A detailed investigation revealed a peculiar zoning in olivine: its Mg/(Mg + Fe) ratio increased in a zone directly adjacent to the glass of inclusions. This effect is probably related to partial water (hydrogen) loss and Fe oxidation after inclusion entrapment. The numerical modeling of such a process showed that the water loss was no higher than a few tenths of percent and could not be responsible for the considerable difference between the compositions of inclusions and groundmass glasses. It is suggested that the latter were enriched in H2O after the complete solidification of the rock owing to interaction with seawater. Based on the obtained data, the compositions of primary boninite magmas were estimated, and it was supposed that variations in melt composition were related not only to olivine and pyroxene fractionation from a single primary melt but also to different degrees and (or) depths of magma derivation.  相似文献   

13.
 Infrared spectroscopy provides a reliable method for rapid, non-destructive quantitative analysis of volatile species in silicate glasses, with applications to geochemistry and volcanology. The technique has been extensively calibrated for transmission measurements, in which the species concentration present is correlated with the height or area of characteristic absorption peaks, for doubly polished samples of known thickness. There are several drawbacks associated with this method, including the need for double polishing of parallel faces on thin samples, the errors associated with sample thickness measurement, and total absorption of the IR beam intensity for samples with high volatile content. We have tested an alternative method for quantitative IR determination of volatile concentrations in silicate glasses, based on analysis of the IR reflectivity signal. The reflectivity method requires preparation of a single polished glass surface, and no thickness measurement of the sample is necessary. The technique is applied easily as a microbeam technique using apertures as small as a few μm in diameter. The method should be particularly useful for volatile analysis of glass inclusions in phenocrystals, or standard samples in thin section. We have developed the methodology for the technique using a series of basanite and leucitite glasses with high carbonate contents (>1 wt% CO2), which could not be easily analyzed via IR transmission. We have used SIMS to standardize the technique. Two features observed in the reflectance spectra near 1400 cm–1 and 1500 cm–1 are due to resonance of the infrared beam with the asymmetric stretching vibrations of carbonate groups. The contribution of these species to the total reflectivity is directly correlated with the carbon abundance in the samples. This forms the basis for an empirical quantitative analysis. The optical constants, including the IR absorption coefficients associated with the CO3 2– stretching vibrations, have been extracted by Kramers-Kronig analysis of the reflectivity data. The molar extinction coefficients are 1119 ± 138 L mol–1 cm–1 and 1198 ± 145 L mol–1 cm–1 for the 1400 and 1500 cm–1 bands, respectively, in excellent agreement with results of previous transmission studies, after orientation effects are taken into account. Received: 29 September 1995 / Accepted: 17 May 1996  相似文献   

14.
Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

16.
《International Geology Review》2012,54(13):1596-1615
ABSTRACT

Nd-isotope and lithogeochemistry of an early Palaeoproterozoic high-Si high-Mg boninite–norite (BN) suite of rocks from the southern Bastar craton, central India, are presented to understand their nature, origin, and tectonic setting of emplacement. Various types of evidence, such as field relationships, radiometric metamorphic ages, and the global distribution of BN magmatism, suggest emplacement in an intracratonic rift setting, commonly around 2.4–2.5 Ga. On the basis of geochemistry these high-Si high-Mg rocks are classified as high-Ca boninites, high-Mg norites, and high-Mg diorites. Nd-isotope data indicate that the high-Mg norite and the high-Mg diorite samples are similar, whereas the high-Ca boninites have a different isotopic character. The high-Mg norite and the high-Mg diorite samples have younger TDM model ages than the high-Ca boninites. Geochemical and Nd-isotopic characteristics of the studied rocks indicate some prospect of crustal contamination; however, the possibility of mantle metasomatism during ancient subduction event cannot be ignored. Trace-element modelling suggests that the high-Ca boninites may have crystallized from a magma generated by a comparatively greater percentage of melting of a lherzolite mantle source than the source for the other two varieties. Furthermore, the high-Ca boninite rocks are most likely derived from an Archaean subduction process (the Whundo-type), whereas the other two types are the products of the interaction of subduction-modified refractory mantle wedge and a plume, around the Neoarchaean–Palaeoproterozoic boundary. The emplacement of the high-Mg norites and the high-Mg diorites may be linked to crustal thickening and associated cratonization at the end of the Archaean.  相似文献   

17.
Mt. Baker is a dominantly andesitic stratovolcano in the northern Cascade arc. In this study, we show that the andesites are not all derived from similar sources, and that open-system processes were dominant during their petrogenesis. To this end, we discuss petrographic observations, mineral chemistry, and whole rock major and trace element chemistry for three of Mt. Baker’s late Pleistocene to Holocene lava flow units. These include the basalt and basaltic andesite of Sulphur Creek (SC) (51.4–55.8 wt% SiO2, Mg# 57–58), the Mg-rich andesite of Glacier Creek (GC) (58.3–58.7 wt% SiO2, Mg# 63–64), and the andesite and dacite of Boulder Glacier (BG) (60.2–64.2 wt% SiO2, Mg# 50–57). Phenocryst populations in all units display varying degrees of reaction and disequilibrium textures along with complicated zoning patterns indicative of open-system processes. All lavas are medium-K and calc-alkaline, but each unit displays distinctive trace element and REE characteristics that do not correlate with the average SiO2 content of the unit. The mafic lavas of SC have relatively elevated REE abundances with the lowest (La/Yb)N (~4.5). The intermediate GC andesites (Mg- and Ni-rich) have the lowest REE abundances and the highest (La/Yb)N (~6.7) with strongly depleted HREE. The more felsic BG lavas have intermediate REE abundances and (La/Yb)N (~6.4). The high-Mg character of the GC andesites can be explained by addition of 4% of a xenocrystic olivine component. However, their depleted REE patterns are similar to other high-Mg andesites reported from Mt. Baker and require a distinct mantle source. The two dominantly andesitic units (GC and BG) are different enough from each other that they could not have been derived from the same parent basalt. Nor could either of them have been derived from the SC basalt by crystal fractionation processes. Crystal fractionation also cannot explain the compositional diversity within each unit. Compositional diversity within the SC unit (basalt to basaltic andesite) can, however, be successfully modeled by mixing of basalt with compositions similar to the dacites in the BG unit. Given that the BG dacites erupted at ~80–90 ka, and a similar composition was mixed with the SC lavas at 9.8 ka, the process that produced this felsic end-member must have been repeatedly active for at least 70 ka.  相似文献   

18.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

19.
 Isotopic and trace element data from mantle and granulite xenoliths are used to estimate the relative contributions of mantle and crustal components to a large ignimbrite, referred to as the upper ignimbrite, that is representative of the voluminous mid-Cenozoic rhyolites of northwestern Mexico. The study also uses data from the volcanic rocks to identify deep crustal xenoliths that are samples of new crust created by the Tertiary magmatism. The isotopic composition of the mantle component is defined by mantle-derived pyroxenites that are interpreted to have precipitated from mid-Cenozoic basaltic magmas. This component has ɛNd≈+1.5, 87Sr/86Sr≈0.7043 and 206Pb/204Pb≈18.6. Within the upper ignimbrite and associated andesitic and dacitic lavas, initial 87Sr/86Sr is positively correlated with SiO2, reaching 0.7164 in the ignimbrite. Initial 206Pb/204Pb ratios also show a positive correlation with silica, whereas ɛNd values have a crude negative correlation, reaching values as low as −2. Of the four isotopically distinct crustal components identified from studies of granulite xenoliths, only the sedimentary protolith of the paragneiss xenoliths can be responsible for the high initial 87Sr/86Sr of the upper ignimbrite. The Nd, Sr, and Pb isotopic compositions of the upper ignimbrite can be modeled with relatively modest assimilation (≤20%) of the sedimentary component ± Proterozoic granulite. Gabbroic composition granulite xenoliths have distinctive Nd, Sr, and Pb isotope ratios that cluster closely within the range of compositions found in the andesitic and dacitic lavas. These mafic granulites are cumulates, and their protoliths are interpreted to have precipitated from the intermediate to silicic magmas at 32–31 Ma. These mafic cumulate rocks are probably representative of much of the deep crust that formed during mid-Cenozoic magmatism in Mexico. Worldwide xenolith studies suggest that the relatively great depth (≤20 km) at which assimilation-fractional crystallization took place in the intermediate to silicic magma systems of the La Olivina region is the rule rather than the exception. Oligocene ignimbrites of the southwestern United States (SWUS) have substantially lower ɛNd values (e.g. <−6) than the upper ignimbrite and other rhyolites from Mexico. This difference appears to reflect a greater crustal contribution to ignimbrites of the SWUS, perhaps due to a higher temperature of the lower crust prior to the emplacement of the Oligocene basaltic magmas. Received: 16 December 1994 / Accepted: 13 September 1995  相似文献   

20.
 Petrologic and oxygen isotope data indicate that water-rich fluids infiltrated metasedimentary rocks of the Waterville and Sangerville (formally Vassalboro) Formations, south-central Maine, during peak metamorphism, and depleted Sangerville rocks in alkalis but not equivalent Waterville rocks. Fluid inclusion data from two outcrops, ∼1 km apart, one of the Waterville and the other of the Sangerville Formations, suggest a cause for the geochemical difference between the two units. Postulated peak metamorphic inclusions, the texturally earliest of aqueous inclusions in the metasediments, approximate the water-rich compositions of peak fluids predicted by mineral-fluid equilibria, and have average salinity in the Sangerville Formation ∼ three times that of equivalent Waterville inclusions. The higher salinity in the Sangerville fluids could explain the greater alkali depletion in these rocks. Probable pre-peak or prograde inclusions are preserved in metasediments as the texturally earliest carbonic inclusions which contain CO2, CH4, N2±H2O, as determined by microthermometry and Raman spectrometry. They may have formed by breakdown of organic matter. Probable retrograde inclusions occur as texturally late aqueous inclusions in healed fractures with salinity ranges indistinguishable between the two formations. Synmetamorphic granitic dikes present in the two outcrops were ruled out as a source for fluids in metasediments because composition and density ranges of inclusions in dikes and metasediments are fundamentally different, and because there is no correlation between the abundance or composition of inclusions in a sample and proximity to dikes. Isochores for many of the inclusions in both metasediments and dikes are not consistent with the inferred PT conditions of their trapping, but intersect at ∼300° to 400° C and 1 to 2 kbar. The intersections probably resulted because inclusion densities continued to equilibrate during uplift and cooling until quartz became rigid. The present densities are those at the last equilibration, not the time of trapping. In contrast, the clear distinctions in inclusion compositions between dikes and between dike and country rock show that the original compositional differences generally have been preserved. Received: 4 February 1994 / Accepted: 22 June 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号