首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG° = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.  相似文献   

2.
A methane-sulfate coupled reaction diffusion model has been developed to describe the inverse relationship commonly observed between methane and sulfate concentrations in the pore waters of anoxic marine sediments. The sediment column was divided into two zones; an upper zone where diagenetic reaction rates are limited by the concentration of oxidizable organic matter and a lower zone in which reaction rates are limited by the concentration of oxidizing agent—sulfate. For each zone differential equations describing the distribution of methane and sulfate were derived. The boundary conditions used to solve these equations resulted in a set of four coupled equations. When fit to data from Saanich Inlet (B.C., Canada) and Skan Bay (Alaska) the model not only reproduces the observed methane and sulfate pore water concentration profiles but also accurately predicts the methane oxidation and sulfate reduction rates. Maximum methane oxidation rates occur at the transition boundary from the upper to the lower layer. In Saanich Inlet sediments from 23 to 40% of the downward sulfate flux is consumed in methane oxidation while in Skan Bay this value is only about 12%.  相似文献   

3.
We investigated coupling between sulfate reduction (SR) and anaerobic oxidation of methane (AOM) by quantifying pore water geochemical profiles, determining rates of microbial processes, and examining microbial community structure at two sites within Mississippi Canyon lease block 118 (MC118) in the Northern Gulf of Mexico. Sediments from the northwest seep contained high concentrations of methane while sediments from the southwest seep contained methane, gaseous n-alkanes and liquid hydrocarbons and had abundant surficial accumulations of gas hydrate. Volumetric (21.5 μmol cm−3 day−1) and integrated (1429 mmol m−2 day−1) rates of SR at MC118 in ex situ incubations are the highest reported thus far for seafloor environments. AOM rates were small in comparison, with volumetric rates ranging from 0.1 to 12.6 nmol cm−3 day−1. Diffusion cannot adequately supply the sulfate required to support these high SR rates so additional mechanisms, possibly biological sulfide oxidation and/or downward advection, play important roles in supplying sulfate at these sites. The microbial communities at MC118 included sulfate-reducing bacteria phylogenetically associated with Desulfobacterium anilini, which is capable of complex hydrocarbon degradation. Despite low AOM rates, the majority of archaea identified were phylogenetically related to previously described methane oxidizing archaea. To evaluate whether weak coupling between SR and AOM occurs in habitats lacking the complex hydrocarbon milieu present at MC118, we compiled available SR and AOM rates and found that the global median ratio of SR to AOM was 10.7:1 rather than the expected 1:1. The global median integrated AOM rate was used to refine global estimates for AOM rates at cold seeps; these new estimates are only 5% of the previous estimate.  相似文献   

4.
Modeling isotopic signatures in systems affected by diffusion, advection, and a reaction which modifies the isotopic abundance of a given species, is a discipline in its infancy. Traditionally, much emphasis has been placed on kinetic isotope effects during biochemical reactions, while isotope effects caused by isotope specific diffusion coefficients have been neglected. A recent study by Donahue et al. (2008) suggested that transport related isotope effects may be of similar magnitude as microbially mediated isotope effects. Although it was later shown that the assumed differences in the isotope specific diffusion coefficients were probably overstated by one or two orders of magnitude (Bourg, 2008), this study raises several important issues: (1) Is it possible to directly calculate isotopic enrichment factors from measured concentration data without modeling the respective system? (2) Do changes in porosity and advection velocity modulate the influence of isotope specific diffusion coefficients on the fractionation factor α? (3) If one has no a priori knowledge whether diffusion coefficients are isotope specific or not, what is the nature and magnitude of the error introduced by either assumption? Here we argue (A) That the direct substitution of measured data into a differential equation is problematic and cannot be used as a replacement for a reaction-transport model; (B) That the transport related fractionation scales linearly with the difference between the respective diffusion coefficients of a given isotope system, but depends in a complex non-linear way on the interplay between advection velocity, and downcore changes of temperature and porosity. Last but not least, we argue that the influence of isotope specific diffusion coefficients on microbially mediated sulfate reduction in typical marine sediments is considerably smaller than the error associated with the determination of the fractionation factor.  相似文献   

5.
We investigated anaerobic ammonium oxidation (anammox) in continental shelf and slope sediments of the Irish and Celtic Seas by using anammox specific ladderane biomarker lipids. We used the presence of an intact ladderane phospholipid as a direct indicator for living anammox bacteria, and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane core lipids as well as the intact ladderane phospholipid, in agreement with 15N-labeling experiments, which revealed anammox activity at all sites. Ladderane core lipid and intact ladderane phospholipid concentrations were significantly correlated (R2 = 0.957 and 0.464, respectively) with anammox activity over the transect of the continental shelf and slope sediments. In the Irish Sea (50-100 m water depth) highest abundances of the intact ladderane phospholipid were found in the upper 2 cm of the sediment, indicating a zone of active anammox. A sharp decline further down-core suggested a strong decrease in anammox biomass and rapid degradation of the intact lipids. In comparison, ladderane core lipids were 1-2 orders of magnitude higher in concentration than the intact ladderane phospholipid and accumulated as dead cell remnants with depth. In the slope sediments of the Celtic Sea both ladderane core lipids and the intact ladderane phospholipid were found in sediments at water depths ranging from 500 to 2000 m. Here, anammox seemed to be active at greater depths of the sediment (>2 cm). Mean abundances of both intact and core ladderane lipids in whole sediment cores increased downslope, indicating an increasing importance of anammox in deeper slope sediments.  相似文献   

6.
The anaerobic oxidation of methane in aquatic environments is a globally significant sink for a potent greenhouse gas. Significant gaps remain in our understanding of the anaerobic oxidation of methane because data describing the distribution and abundance of putative anaerobic methanotrophs in relation to rates and patterns of anaerobic oxidation of methane activity are rare. An integrated biogeochemical, molecular ecological and organic geochemical approach was used to elucidate interactions between the anaerobic oxidation of methane, methanogenesis, and sulfate reduction in sediments from two cold seep habitats (one brine site, the other a gas hydrate site) along the continental slope in the Northern Gulf of Mexico. The results indicate decoupling of sulfate reduction from anaerobic oxidation of methane and the contemporaneous occurrence of methane production and consumption at both sites. Phylogenetic and organic geochemical evidence indicate that microbial groups previously suggested to be involved in anaerobic oxidation of methane coupled to sulfate reduction were present and active. The distribution and isotopic composition of lipid biomarkers correlated with microbial distributions, although concrete assignment of microbial function based on biomarker profiles was complicated given the observed overlap of competing microbial processes. Contemporaneous activity of anaerobic oxidation of methane and bicarbonate-based methanogenesis, the distribution of methane-oxidizing microorganisms, and lipid biomarker data suggest that the same microorganisms may be involved in both processes.  相似文献   

7.
地球曾经历了3次超大陆演化过程,其中2次超大陆(哥伦比亚(Columbia)和罗迪尼亚(Rodinia))旋回涉及中新元古代,并与一系列区域性事件相联系,形成了多成因的超大陆演化模型。华北中东部新元古代沉积事件、扬子和塔里木新元古代裂谷事件、雪球事件等都被视为Rodinia超大陆的裂解响应,它们对定时三大陆块相互关系及定位其在全球超大陆的位置具有至关重要的作用,也反映了重要沉积地质事件在超大陆研究中不可或缺的作用和意义。此外,在中新元古代的Columbia和Rodinia超大陆演化过程中,还伴随发育具有广泛区域性甚至全球意义的巨厚白云岩与碳酸盐岩微生物(岩)、红层与黑色页岩、全球性臼齿亮晶碳酸盐岩和埃迪卡拉纪盖帽碳酸盐岩等沉积事件群及元素(同位素)漂移等地球化学异常事件,也包括特殊且重要的磷块岩、锰、铁矿等沉积成矿事件。由于不断显示出来在全球古大陆重建和古地理恢复方面的重要作用,它们越来越得到学术界的广泛关注和研究。文中通过系统分析中国中新元古代超大陆旋回演化中发育的部分重要或关键地质事件(群)时空发育与分布特征,并结合作者团队的实际资料和测试数据,以期揭示超大陆演化过程与重要沉积地质事件的内在联系,为超大陆聚散旋回演化和时空定位及原型沉积盆地的发育和评价提供科学证据。  相似文献   

8.
Convergent lines of molecular, carbon-isotopic, and phylogenetic evidence have previously indicated (Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805.) that archaea are involved in the anaerobic oxidation of methane in sediments from the Eel River Basin, offshore northern California. Now, further studies of those same sediments and of sediments from a methane seep in the Santa Barbara Basin have confirmed and extended those results. Mass spectrometric and chromatographic analyses of an authentic standard of sn-2-hydroxyarchaeol (hydroxylated at C-3 in the sn-2 phytanyl moiety) have confirmed our previous, tentative identification of this compound but shown that the previously examined product was the mono-TMS, rather than di-TMS, derivative. Further analyses of 13C-depleted lipids, appreciably more abundant in samples from the Santa Barbara Basin, have shown that the archaeal lipids are accompanied by two sets of products that are only slightly less depleted in 13C. These are additional glycerol ethers and fatty acids. The alkyl substituents in the ethers (mostly monoethers, with some diethers) are non-isoprenoidal. The carbon-number distributions and isotopic compositions of the alkyl substituents and of the fatty acids are similar, suggesting strongly that they are produced by the same organisms. Their structures, n-alkyl and methyl-branched n-alkyl, require a bacterial rather than archaeal source. The non-isoprenoidal glycerol ethers are novel constituents in marine sediments but have been previously reported in thermophilic, sulfate- and nitrate-reducing organisms which lie near the base of the rRNA-based phylogenetic tree. Based on previous observations that the anaerobic oxidation of methane involves a net transfer of electrons from methane to sulfate, it appears likely that the non-archaeal, 13C-depleted lipids are products of one or more previously unknown sulfate-reducing bacteria which grow syntrophically with the methane-utilizing archaea. Their products account for 50% of the fatty acids in the sample from the Santa Barbara Basin. At all methane-seep sites examined, the preservation of aquatic products is apparently enhanced because the methane-oxidizing consortium utilizes much of the sulfate that would otherwise be available for remineralization of materials from the water column.  相似文献   

9.
A diffusion-diagenesis model of the sulfur cycle is developed to calculate theoretical distributions of stable sulfur isotopes in marine sediments. The model describes the depth variation in δ34S of dissolved sulfate and H2S. and of pyrite. The effects of sulfate reduction, sulfate and H2S diffusion. and of sedimentation are considered as well as the bacterial isotope fractionation and the degree of pyrite formation. Under open system conditions of sulfur diagenesis the isotopic difference, ΔSO2?4 — H2S, tends to increase with depth being smaller than the bacterial fractionation factor near the sediment surface and larger in deeper layers. The two isotopes in SO2?4 or in H2S do not diffuse in the same proportion as they occur in the porewater. This explains why sulfur, which is incorporated from seawater sulfate by diffusion and precipitation as pyrite, can be enriched in 32S relative to the seawater sulfate. The model calculations demonstrate the importance of taking the whole dynamic sulfur cycle into account before drawing conclusions about sulfur diagenesis from the stable isotope distribution.  相似文献   

10.
Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments. They may be buried in the sediment or oxidized by O2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3 or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer-marked 55FeS2 occurred with MnO2 but not with NO3 or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS2 and FeS oxidation with NO3 or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S0 as substrates and NO3 as electron acceptor, in the presence of 55FeS2, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of 55FeS2 could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds in a carbonate-buffered solution at pH 8. Despite many different experiments, an anaerobic microbial dissolution of FeS2 could not be detected; thus, we conclude that this process does not have a significant role in marine sediments. FeS can be oxidized microbially with NO3 as electron acceptor. O2 and MnO2, but not NO3 or amorphous Fe(III) oxide, are chemical oxidants for both FeS2 and FeS.  相似文献   

11.
《Applied Geochemistry》2002,17(4):337-352
Organic C burial rates and C–S relationships were investigated in the Holocene sediment sequences of 3 shallow polymictic coastal lagoons in the southern Baltic Sea to better understand the biogeochemical cycling of C and S in these environmental systems. The results show that these lagoons may have a considerable influence on the environmental status of the southern Baltic Sea area in having the potential to act as a temporary sink or source for heavy metals. High organic C accumulation rates (Corg-AR) can be observed in the sediments due to a high organic matter supply from land and a high productivity of the water bodies as a result of eutrophication. However, organic C burial does not increase as a result of increasing sediment accumulation rates (SAR). Even when high sedimentation rates do occur, there appears to be a thorough recycling and resuspension of the sediment enhancing the biological decay of organic matter before burial or the removal of organic matter from the system by transport. That is why high SAR in the coastal lagoons do not enhance pyrite formation, and thereby permanent fixing of heavy metals in the sediments, to the extent that could be expected from their magnitude. Initially there is a high potential for a temporary binding of heavy metals, but the latter are likely to be subject to mobilization and redistribution within the sediments and the water column. The patterns of burial of organic and mineral matter are different from those observed in the present-day Baltic Proper, implying possible important links in deposition between the central and coastal areas of the Baltic Sea and implications for C cycling in the ecosystem of the Baltic Sea.  相似文献   

12.
Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 m water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m−2 a−1, effectively removing methane below the sediment-water interface. Single measurements revealed AOM peaks of 2 to 51 nmol cm−3 d−1, with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant amounts of substrates for methanogenesis. SR within the SMT was mostly fuelled by methane. AOM led to the formation of isotopically light DIC (δ13C: −24.6‰ VPDB) and of distinct layers of authigenic carbonates (δ13C: −14.6‰ VPDB).  相似文献   

13.
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on δ18O and δ34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying δ18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ∼2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ∼2.7. The δ34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (∼−0.7‰) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (ε18OSO4-H2O) of ∼3.5‰ was determined for the anaerobic (biological and abiotic) experiments. This measured value was then used to estimate the oxygen isotope fractionation effects between sulfate and dissolved oxygen in the aerobic experiments which were −10.0‰, −10.8‰, and −9.8‰ for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between δ18OSO4 values in the biological and abiotic experiments, it is suggested that δ18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions.  相似文献   

14.
Marine sediments and ferromanganese nodules from the Pacific Ocean have been analyzed for the OMn ratio of solid manganese. We tested six chemical methods and concluded that the iodometric and oxalate methods were equivalent and were the best choice in terms of accuracy and precision on natural samples. We choose the iodometric method for most of our analyses because the oxalate procedure is a method of differences.The ferromanganese nodules that we analyzed were all from MANOP site H and had MnFe ratios that ranged from 5.6 to 70. These nodules were invariably highly oxidized with OMn values ranging from 1.90 to 2.00. Our most precise analyses suggest that less than 1% of the total manganese is present as Mn(II).We also analyzed red clay and hemipelagic sediments from the eastern tropical Pacific (Baja borderland and MANOP site H) and carbonate ooze samples from the equatorial Pacific. These sediments are also highly oxidized (OMn= 1.90 to 2.00) except when Mn(II) appears in the interstitial water. As dissolved Mn(II) increases the value of the OMn ratio in the solid phase decreases. The OMn ratio decreases to values as low as 1.40. This decrease appears to be due to a decrease in oxidized manganese by reduction, however, an increase in reduced manganese in the solid sediments by adsorption or MnCO3 formation can not be ruled out in all cases.  相似文献   

15.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   

16.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

17.
The organic rich sediments of the Skagerrak contain high quantities of shallow gas of mostly biogenic origin that is transported to the sediment surface by diffusion. The sulfate methane transition zone (SMTZ), where anaerobic oxidation of methane (AOM) and sulfate reduction occur, functions as a methane barrier for this upward diffusing methane.To investigate the regulation of AOM and sulfate reduction rates (SRR) and the controls on the efficiency of methane consumption, pore water concentrations, and microbial rates of AOM, sulfate reduction and methanogenesis were determined in three gravity cores collected along the slope of the Norwegian Trench in the Skagerrak. SRR occurred in two distinct peaks, at the sediment surface and the SMTZ, the latter often exceeding the peak AOM rates that occurred at the bottom of the SMTZ. Highest rates of both AOM and SRR were observed in a core from a pockmark, where advective methane transport occurred, generating high methane and sulfate fluxes. But even at this site with a shallow SMTZ, the entire flux of methane was oxidized below the sediment surface. AOM, SRR and methanogenesis seem to be closely associated and strongly regulated by sulfate concentrations, which were, in turn, regulated by the methane flux. Rate measurements of SRR, AOM and methanogenesis revealed a tight coupling of these processes. Bicarbonate-based methanogenesis occurred at moderate sulfate concentrations (>5 mM) above the AOM zone but seemed to be inhibited in the depth where AOM occurred. The unbalanced stoichiometry of AOM and SRR in the SMTZ was more pronounced in rate measurements than in methane and sulfate fluxes, and seemed more likely be related to enhanced SRR in this zone than an underestimation of methane fluxes.  相似文献   

18.
We evaluate anaerobic oxidation of methane (AOM) in the Black Sea water column by determining distributions of archaea-specific glyceryl dialkyl glyceryl tetraethers (GDGTs) and 13C isotopic compositions of their constituent biphytanes in suspended particulate matter (SPM), sinking particulate matter collected in sediment traps, and surface sediments. We also determined isotopic compositions of fatty acids specific to sulfate-reducing bacteria to test for biomarker and isotopic evidence of a syntrophic relationship between archaea and sulfate-reducing bacteria in carrying out AOM. Bicyclic and tricyclic GDGTs and their constituent 13C-depleted monocyclic and bicyclic biphytanes (down to −67‰) indicative of archaea involved in AOM were present in SPM in the anoxic zone below 700 m depth. In contrast, GDGT-0 and crenarchaeol derived from planktonic crenarchaeota dominated the GDGT distributions in the oxic surface and shallow anoxic waters. Fatty acids indicative of sulfate-reducing bacteria (i.e., iso- and anteiso-C15) were not strongly isotopically depleted (e.g., −32 to −25‰), although anteiso-C15 was 5‰ more depleted in 13C than iso-C15. Our results suggest that either AOM is carried out by archaea independent of sulfate-reducing bacteria or those sulfate-reducing bacteria involved in a syntrophy with methane-oxidizing archaea constitute a small enough fraction of the total sulfate-reducing bacterial community that an isotope depletion in their fatty acids is not readily detected. Sinking particulate material collected in sediment traps and the underlying sediments in the anoxic zone contained the biomarker and isotope signature of upper-water column archaea. AOM-specific GDGTs and 13C-depleted biphytanes characteristic of the SPM in the deep anoxic zone are not incorporated into sinking particles and are not efficiently transported to the sediments. This observation suggests that sediments may not always record AOM in overlying euxinic water columns and helps explain the absence of AOM-derived biomarkers in sediments deposited during past periods of elevated levels of methane in the ocean.  相似文献   

19.
Sulfur isotope composition (δ34S) profiles in sediment pore waters often show an offset between sulfate and sulfide much greater in magnitude than S isotope fractionations observed in pure cultures. A number of workers have invoked an additional reaction, microbial disproportionation of sulfur intermediates, to explain the offset between experimental and natural systems. Here, we present an alternative explanation based on modeling of pore water sulfate and sulfide concentrations and stable isotope data from the Cariaco Basin (ODP Leg 165, Site 1002B). The use of unique diffusion coefficients for and , based on their unequal molecular masses, resulted in an increase in the computed fractionation by almost 10‰, when compared to the common assumption of equal diffusion coefficients for the two species. These small differences in diffusion coefficients yield calculated isotopic offsets between coeval sediment pore water sulfate and sulfide without disproportionation (up to 53.4‰) that exceed the largest fractionations observed in experimental cultures. Furthermore, the diffusion of sulfide within sediment pore waters leads to values that are even greater than those predicted by our model for sulfate reduction with unique diffusion coefficients. These diffusive effects on the sulfur isotope composition of pore water sulfate and sulfide can impact our interpretations of geologic records of sulfate and sulfide minerals, and should be considered in future studies.  相似文献   

20.
A reservoir model describing the time evolution of the sedimentary cycle of sulfur over the past 800 my has been developed. As a first approximation, the ocean sulfate concentration is assumed to be time-independent. With this assumption, the model is integrated backward in time and a new initialization procedure is derived in order to calculate the present state of the system which must be compatible with both observational data and model equations. The effects of a variation of the present state of the cycle on its past evolution are investigated. It is found that, when the present gypsum reservoir content is too low or when the weathering rate constants are too high, no acceptable solution can be obtained for the evolution of the cycle, since one reservoir is forced to depletion. The sensitivity of the model to the mean isotopic composition of the sedimentary system and to the fractionation factor during pyrite formation is also studied.Moreover, a model with time-dependent ocean sulfate concentration was developed. The existence of an acceptable solution appears to be linked to the steady state hypothesis for ocean sulfate, since a model with no acceptable steady state solution may be integrated until t = −800 my without any problem of reservoir depletion when the time-dependent equations are used.A tentative evolution of the ocean sulfate concentration is calculated. It is shown that this concentration is negatively correlated to the δ34S of seawater sulfate. The carbon cycle is modelled in order to compare the calculated δ13C of carbonate deposits to the observational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号