首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Extensive measurements of dissolved Re and major ion abundances in the Yamuna River System (YRS), a major tributary of the Ganga, have been performed along its entire stretch in the Himalaya, from its source near the Yamunotri Glacier to its outflow at the foothills of the Himalaya at Saharanpur. In addition, Re analysis has been made in granites and Precambrian carbonates, some of the major lithologies of the drainage basin. These data, coupled with those available for black shales in the Lesser Himalaya, allow an assessment of these lithologies’ contributions to the Re budget of the YRS.The Re concentrations in the YRS range from 0.5 to 35.7 pM with a mean of 9.4 pM, a factor of ∼4 higher than that reported for its global average concentration in rivers. Dissolved Re and ΣCations∗ (= Na∗+K+Ca+Mg) are strongly correlated in the YRS, indicating that they are released to these waters in roughly the same proportion throughout their course. The Re/ΣCations∗ in most of these rivers are one to two orders of magnitude higher than the (Re/Na+K+Mg+Ca) measured in granites of the Yamuna basin. This leads to the conclusion that, on average, granites/crystallines make only minor contributions to the dissolved Re budget of the YRS on a basin-wide scale, though they may be important for rivers with low dissolved Re. Similarly, Precambrian carbonates of the Lesser Himalaya do not seem to be a major contributor to dissolved Re in these rivers, as their Re/(Ca+Mg) is much less than those in the rivers. The observation that Re concentrations in rivers flowing through black shales and in groundwaters percolating through phosphorite-black shale-carbonate layers in phosphorite mines are high, and that Re and SO4 are significantly correlated in YRS, seems to suggest that the bulk of the dissolved Re is derived from black shale/carbonaceous sediments. Material balance considerations, based on average Re of 30 ng g−1 in black shales from the Lesser Himalaya, require that its abundance in the drainage basin of the YRS needs to be a few percent to yield average Re of 9.4 pM. Furthermore, the positive correlation between Re and ΣCations∗ would require that these Re-rich sediments (e.g., black shales) and Re-poor lithologies (e.g., crystallines, Precambrian carbonates) contribute Re and cations in roughly the same proportion throughout the drainage basin. The available data on the abundance and distribution of black shales in the basin are not adequate to test if these requirements can be met.The annual fluxes of dissolved Re at the base of the Himalaya from the Yamuna are ∼150 mol at Batamandi and ∼100 mol at Saharanpur, compared to ∼120 mol from the Ganga at Rishikesh. The total flux from the Yamuna and the Ganga account for ∼0.4% of the global riverine Re flux, much higher than their contribution to global water discharge. This is also borne out from the mobilization rate of Re: ∼1 to 3 g km−2 y−1 in the Ganga and Yamuna basins in the Himalaya, compared to the global average of ∼0.1 g km−2 y−1.Black shale weathering can also significantly influence the budgets of Os and U in rivers and CO2 in rivers and the atmosphere. Using dissolved Re in rivers as a proxy, it is estimated that ∼(6-9) × 108 kg y−1 of black shales are being weathered in the Ganga and Yamuna basins in the Himalaya. Weathering of such amounts of black shales can account for the reported concentrations of Os and U in these rivers. Furthermore, if the weathering results in the conversion of organic carbon in the black shales to CO2, it would release ∼2 × 105 mol of CO2 km−2 y−1 in the Yamuna and Ganga basins in the Himalaya, comparable to the CO2 consumption from silicate weathering.  相似文献   

3.
The role of silicate and carbonate weathering in contributing to the major cation and Sr isotope geochemistry of the headwaters of the Ganga-Ghaghara-Indus system is investigated from the available data. The contributions from silicate weathering are determined from the composition of granites/ gneisses, soil profiles developed from them and from the chemistry of rivers flowing predominantly through silicate terrains. The chemistry of Precambrian carbonate outcrops of the Lesser Himalaya provided the data base to assess the supply from carbonate weathering. Mass balance calculations indicate that on an average ∼ 77% (Na + K) and ∼ 17% (Ca + Mg) in these rivers is of silicate origin. The silicate Sr component in these waters average ∼40% and in most cases it exceeds the carbonate Sr. The observations that (i) the87Sr/86Sr and Sr/Ca in the granites/gneisses bracket the values measured in the head waters; (ii) there is a strong positive correlation between87Sr/86Sr of the rivers and the silicate derived cations in them, suggest that silicate weathering is a major source for the highly radiogenic Sr isotope composition of these source waters. The generally low87Sr/86Sr (< 0.720) and Sr/Ca (∼ 0.2 nM/ μM) in the Precambrian carbonate outcrops rules them out as a major source of Sr and87Sr/86Sr in the headwaters on a basin-wide scale, however, the high87Sr/86Sr (∼ 0.85) in a few of these carbonates suggests that they can be important for particular streams. The analysis of87Sr/86Sr and Ca/Sr data of the source waters show that they diverge from a low87Sr/86Sr and low Ca/Sr end member. The high Ca/Sr of the Precambrian carbonates precludes them from being this end member, other possible candidates being Tethyan carbonates and Sr rich evaporite phases such as gypsum and celestite. The results of this study should find application in estimating the present-day silicate and carbonate weathering rates in the Himalaya and associated CO2 consumption rates and their global significance.  相似文献   

4.
Concentrations of major ions, Sr and 87Sr/86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this ‘excess Na’ (Na∗ = Nariv − Clriv) a common index of silicate weathering yield values of ∼18 tons km−2 yr−1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ∼5 tons km−2 yr−1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates.Budget calculations show that the Yamuna, the Son and Gomti together account for ∼75% Na, 41% Mg and ∼53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ?10% of the major ion fluxes of the Ganga at Rajmahal during high river stages (October). The impact of both saline/alkaline soils and anthropogenic sources on the major ion abundances of the Ganga is minimum during its peak flow and therefore the SER and CO2 consumption rates of the river is best determined during this period.  相似文献   

5.
We explored changes in the relative importance of carbonate vs. silicate weathering as a function of landscape surface age by examining the Ca/Sr and Sr isotope systematics of a glacial soil chronosequence located in the Raikhot watershed within the Himalaya of northern Pakistan. Bedrock in the Raikhot watershed primarily consists of silicate rock (Ca/Sr ≈ 0.20 μmol/nmol, 87Sr/86Sr ≈ 0.77 to 1.2) with minor amounts of disseminated calcite (Ca/Sr ≈ 0.98 to 5.3 μmol/nmol, 87Sr/86Sr ≈ 0.79 to 0.93) and metasedimentary carbonate (Ca/Sr ≈ 1.0 to 2.8 μmol/nmol, 87Sr/86Sr ≈ 0.72 to 0.82). Analysis of the exchangeable, carbonate, and silicate fractions of seven soil profiles ranging in age from ∼0.5 to ∼55 kyr revealed that carbonate dissolution provides more than ∼90% of the weathering-derived Ca and Sr for at least 55 kyr after the exposure of rock surfaces, even though carbonate represents only ∼1.0 wt% of fresh glacial till. The accumulation of carbonate-bearing dust deposited on the surfaces of older landforms partly sustains the longevity of the carbonate weathering flux. As the average landscape surface age in the Raikhot watershed increases, the Ca/Sr and 87Sr/86Sr ratios released by carbonate weathering decrease from ∼3.6 to ∼0.20 μmol/nmol and ∼0.84 to ∼0.72, respectively. The transition from high to low Ca/Sr ratios during weathering appears to reflect the greater solubility of high Ca/Sr ratio carbonate relative to low Ca/Sr ratio carbonate. These findings suggest that carbonate weathering controls the dissolved flux of Sr emanating from stable Himalayan landforms comprising mixed silicate and carbonate rock for tens of thousands of years after the mechanical exposure of rock surfaces to the weathering environment.  相似文献   

6.
The influx of Sr responsible for increase in marine Sr has been attributed to rise of Himalaya and weathering of the Himalayan rocks. The rivers draining Himalaya to the ocean by the northern part of the Indian sub-continent comprising the Ganga Alluvial Plain (GAP) along with Central parts of the Himalaya and the northern part of the Indian Craton are held responsible for the transformation of Sr isotopic signature. The GAP is basically formed by the Himalayan-derived sediments and serves as transient zone between the source (Himalaya) and the sink (Bay of Bengal). The Gomati River, an important alluvial tributary of the Ganga River, draining nearly 30,500 km2 area of GAP is the only river which is originating from the GAP. The river recycles the Himalayan-derived sediments and transport its weathering products into the Ganga River and finally to Bay of Bengal. 11 water samples were collected from the Gomati River and its intrabasinal lakes for measurement of Sr isotopic composition. Sr concentration of Gomati River water is about 335 μg/l, which is about five times higher than the world’s average of river water (70 μg/l) and nearly three times higher than the Ganga River water in the Himalaya (130 μg/l) The Sr isotopic ratios reported are also higher than global average runoff (0.7119) and to modern seawater (0.7092) values. Strong geochemical sediment–water interaction appearing on surface is responsible for the dissolved Sr isotopic ratios in the River water. Higher Sr isotopic rations found during post-monsoon than in pre-monsoon season indicate the importance of fluxes due to monsoonal erosion of the GAP into the Gomati River. Monsoon precipitation and its interaction with alluvium appear to be major vehicle for the addition of dissolved Sr load into the alluvial plain rivers. This study establishes that elevated 87Sr/86Sr ratios of the Gomati River are due to input of chemical weathering of alluvial material present in the Ganga Alluvial Plain.  相似文献   

7.
Determining the relative proportions of silicate vs. carbonate weathering in the Himalaya is important for understanding atmospheric CO2 consumption rates and the temporal evolution of seawater Sr. However, recent studies have shown that major element mass-balance equations attribute less CO2 consumption to silicate weathering than methods utilizing Ca/Sr and 87Sr/86Sr mixing equations. To investigate this problem, we compiled literature data providing elemental and 87Sr/86Sr analyses for stream waters and bedrock from tributary watersheds throughout the Himalaya Mountains. In addition, carbonate system parameters (PCO2, mineral saturation states) were evaluated for a selected suite of stream waters. The apparent discrepancy between the dominant weathering source of dissolved major elements vs. Sr can be reconciled in terms of carbonate mineral equilibria. Himalayan streams are predominantly Ca2+-Mg2+-HCO3 waters derived from calcite and dolomite dissolution, and mass-balance calculations demonstrate that carbonate weathering contributes ∼87% and ∼76% of the dissolved Ca2+ and Sr2+, respectively. However, calculated Ca/Sr ratios for the carbonate weathering flux are much lower than values observed in carbonate bedrock, suggesting that these divalent cations do not behave conservatively during stream mixing over large temperature and PCO2 gradients in the Himalaya.The state of calcite and dolomite saturation was evaluated across these gradients, and the data show that upon descending through the Himalaya, ∼50% of the streams evaluated become highly supersaturated with respect to calcite as waters warm and degas CO2. Stream water Ca/Mg and Ca/Sr ratios decrease as the degree of supersaturation with respect to calcite increases, and Mg2+, Ca2+, and HCO3 mass balances support interpretations of preferential Ca2+ removal by calcite precipitation. On the basis of patterns of saturation state and PCO2 changes, calcite precipitation was estimated to remove up to ∼70% of the Ca2+ originally derived from carbonate weathering. Accounting for the nonconservative behavior of Ca2+ during riverine transport brings the Ca/Sr and 87Sr/86Sr composition of the carbonate weathering flux into agreement with the composition of carbonate bedrock, thereby permitting consistency between elemental and Sr isotope approaches to partitioning stream water solute sources. These results resolve the dissolved Sr2+ budget and suggest that the conventional application of two-component Ca/Sr and 87Sr/86Sr mixing equations has overestimated silicate-derived Sr2+ and HCO3 fluxes from the Himalaya. In addition, these findings demonstrate that integrating stream water carbonate mineral equilibria, divalent cation compositional trends, and Sr isotope inventories provides a powerful approach for examining weathering fluxes.  相似文献   

8.
Exhumation of the Himalayan-Tibetan orogen is implicated in the marked rise in seawater 87Sr/86Sr ratios since 40 Ma. However both silicate and carbonate rocks in the Himalaya have elevated 87Sr/86Sr ratios and there is disagreement as to how much of the 87Sr flux is derived from silicate weathering. Most previous studies have used element ratios from bedrock to constrain the proportions of silicate- and carbonate-derived Sr in river waters. Here we use arrays of water compositions sampled from the head waters of the Ganges in the Indian and Nepalese Himalaya to constrain the end-member element ratios. The compositions of tributaries draining catchments restricted to a limited range of geological units can be described by two-component mixing of silicate and carbonate-derived components and lie on a plane in multicomponent composition space. Key elemental ratios of the carbonate and silicate components are determined by the intersection of the tributary mixing plane with the planes Na = 0 for carbonate and constant Ca/Na for silicate. The fractions of Sr derived from silicate and carbonate sources are then calculated by mass-balance in Sr-Ca-Mg-Na composition space. Comparison of end-member compositions with bedrock implies that secondary calcite deposition may be important in some catchments and that dissolution of low-Mg trace calcite in silicate rocks may explain discrepancies in Sr-Ca-Na-Mg covariation. Alternatively, composition-dependent precipitation or incongruent dissolution reactions may rotate mixing trends on cation-ratio diagrams. However the calculations are not sensitive to transformations of the compositions by incongruent dissolution or precipitation processes provided that the transformed silicate and carbonate component vectors are constrained. Silicates are calculated to provide ∼50% of the dissolved Sr flux from the head waters of the Ganges assuming that discrepancies between Ca-Mg-Na covariation and the silicate rock compositions arise from addition of trace calcite. If the Ca-Mg-Na mixing plane is rotated by composition-dependent secondary calcite deposition, this estimate would be increased. Moreover, when 87Sr/86Sr ratios of the Sr inputs are considered, silicate Sr is responsible for 70 ± 16% (1σ) of the 87Sr flux forcing changes in seawater Sr-isotopic composition. Since earlier studies predict that silicate weathering generates as little as 20% of the total Sr flux in Himalayan river systems, this study demonstrates that the significance of silicate weathering can be greatly underestimated if the processes that decouple the water cation ratios from those of the source rocks are not properly evaluated.  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(13-14):1905-1925
Himalayan rivers have very unusual Sr characteristics and their budget cannot be achieved by simple mixing between silicate and carbonate even if carbonates are radiogenic. We present Sr, O, and C isotopic data from river and rain water, bedload, and bedrock samples for the western and central Nepal Himalaya and Bangladesh, including the monsoon season. Central Himalayan rivers receive Sr from several sources: carbonate and clastic Tethyan sediments, High Himalayan Crystalline (HHC) gneisses and granitoids with minor marbles, carbonates and metasediments of the Lesser Himalaya (LH), and Miocene-Recent foreland basin sediment from the Siwaliks group and the modern flood plain. In the Tethyan Himalaya rivers have dissolved [Sr] ≈ 6 μmol/l and 87Sr/86Sr ≈ 0.717, with a large contribution from moderately radiogenic carbonate. Rivers draining HHC gneisses are very dilute with [Sr] ≈ 0.2 μmol/l and 87Sr/86Sr ≈ 0.74. Lesser Himalayan streams also have low [Sr] ≈ 0.4 μmol/l and are highly radiogenic (87Sr/86Sr ≥ 0.78). Highly radiogenic carbonates of the LH do not contribute significantly to the Sr budget because they are sparse and have very low [Sr]. In large rivers exiting the Himalaya, Sr systematics can be modeled as a mixture between Tethyan rivers, where slightly radiogenic carbonates (mean 87Sr/86Sr ≈ 0.715) are the main source of Sr, and Lesser Himalaya waters, where extremely radiogenic silicates (>0.8) are the main source of Sr. HHC waters are less important because of their low [Sr]. Rivers draining the Siwaliks foreland basin sediments have [Sr] ≈ 4 μmol/l and 87Sr/86Sr ≈ 0.725. Weathering of silicates in the Siwaliks and the flood plain results in a probably significant radiogenic (0.72–0.74) input to the Ganges and Brahmaputra (G-B), but quantification of this flux is limited by uncertainties in the hydrologic budget. The G-B in Bangladesh show strong seasonal variability with low [Sr] and high 87Sr/86Sr during the monsoon. Sr in the Brahmaputra ranges from 0.9 μmol/l and 0.722 in March to 0.3 μmol/l and 0.741 in August. We estimate the seasonally weighted flux from the G-B to be 6.5 × 108 mol/yr with 87Sr/86Sr = 0.7295.  相似文献   

10.
Filtered subglacial meltwater samples were collected daily during the onset of melt (May) and peak melt (July) over the 2011 melt season at the Athabasca Glacier (Alberta, Canada) and analyzed for strontium-87/strontium-86 (87Sr/86Sr) isotopic composition to infer the evolution of subglacial weathering processes. Both the underlying bedrock composition and subglacial water–rock interaction time are the primary influences on meltwater 87Sr/86Sr. The Athabasca Glacier is situated atop Middle Cambrian carbonate bedrock that also contains silicate minerals. The length of time that subglacial meltwater interacts with the underlying bedrock and substrate is a predominant determining factor in solute concentration. Over the course of the melt season, increasing trends in Ca/K and Ca/Mg correspond to overall decreasing trends in 87Sr/86Sr, which indicate a shift in weathering processes from the presence of silicate weathering to primarily carbonate weathering.Early in the melt season, rates of carbonate dissolution slow as meltwater approaches saturation with respect to calcite and dolomite, corresponding to an increase in silicate weathering that includes Sr-rich silicate minerals, and an increase in meltwater 87Sr/86Sr. However, carbonate minerals are preferentially weathered in unsaturated waters. During the warmest part of a melt season the discharged meltwater is under saturated, causing an increase in carbonate weathering and a decrease in the radiogenic Sr signal. Likewise, larger fraction contributions of meltwater from glacial ice corresponds to lower 87Sr/86Sr values, as the meltwater has lower water–rock interaction times in the subglacial system. These results indicate that although weathering of Sr-containing silicate minerals occurs in carbonate dominated glaciated terrains, the continual contribution of new meltwater permits the carbonate weathering signal to dominate.  相似文献   

11.
Large seasonal variations in the dissolved load of the headwater tributaries of the Marsyandi river (Nepal Himalaya) for major cations and 87Sr/86Sr ratios are interpreted to result from a greater dissolution of carbonate relative to silicate at high runoff. There is up to a 0.003 decrease in strontium isotope ratios and a factor of 3 reduction in the Si(OH)4/Ca ratio during the monsoon. These variations, in small rivers sampling uniform lithologies, result from a different response of carbonate and silicate mineral dissolution to climatic forcing. Similar trends are observed in compiled literature data, from both Indian and Nepalese Himalayan rivers. Carbonate weathering is more sensitive to monsoonal runoff because of its faster dissolution kinetics. Silicate weathering increases relative to carbonate during the dry season, and may be more predominant in groundwater with longer water-rock interaction times. Despite this kinetic effect, silicate weathering fluxes are dominated by the monsoon flux, when between 50% and 70% of total annual silicate weathering flux occurs.  相似文献   

12.
Fluxes of Sr into the headwaters of the Ganges   总被引:1,自引:0,他引:1  
Himalayan weathering is recognized as an important agent in modifying sea water chemistry, but there are significant uncertainties in our understanding of Himalayan riverine fluxes. This paper examines causes of the variability, including that of the seasons, by analysis of downstream variations in Sr, 87Sr, and major ions in the mainstream, in relation to the composition of tributary streams from subcatchments with differing geologic substrates.Water samples were collected over four periods spanning the premonsoon, monsoon, and postmonsoon seasons. Uncertainties in the relative fluxes have been estimated, using Monte Carlo techniques, from the short-term variability of mainstream chemistry and the scatter of tributary compositions. The results show marked seasonal variations in the relative inputs related to high monsoon rainfall in the High and Lesser Himalaya, contrasting with the major contribution from glacial melt waters from the Tibetan Sedimentary Series (TSS) at times of low rainfall. Much of the spread in previously published estimates of the sources of Sr in Himalayan rivers may result from these seasonal variations in Sr fluxes.The annual fluxes of Sr into the headwaters of the Ganges are derived from the three main tectonic units in the proportions 35 ± 1% from the TSS, 27 ± 3% from the High Himalayan Crystalline Series (HHCS), and 38 ± 8% from the Lesser Himalaya. The particularly elevated 87Sr/86Sr ratios characteristic of the HHCS and the Lesser Himalaya enhance their influence on seawater Sr-isotope composition. The TSS contributes 13 ± 1%, the HHCS 30 ± 3%, and the Lesser Himalaya 57 ± 11% of the 87Sr flux in excess of the seawater 87Sr/86Sr ratio of 0.709.  相似文献   

13.
We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO2 with moderate (0.710-0.715) 87Sr/86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO2 consumption rates by silicate weathering (6-120 × 103 mol/km2/yr) are low and have a relative uncertainty of ∼40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO2 consumption rates (110-570 × 103 mol/km2/yr) and more radiogenic 87Sr/86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ∼800 mm/yr.  相似文献   

14.
River water composition (major ion and 87Sr/86Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L−1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L−1), with radiogenic 87Sr/86Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and 87Sr/86Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and 87Sr/86Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and 87Sr/86Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin.  相似文献   

15.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

16.
Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts.Samples (n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l−1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l−1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO4 from saline soils and anthropogenic inputs have values in excess of 170 mg l−1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of “selected” basins, which exclude rivers supersaturated in calcite and which have high Cl and SO4, are in range of ∼3 to ∼60 t km−2 y−1. This yields an area-weighted average CWR of ∼16 t km−2 y−1 for the Deccan Traps. This is a factor of ∼2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) “selection” of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps.Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ∼3 to ∼60 t km−2 y−1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of calculated and measured silicate-Ca in these rivers indicates that at most ∼30% of Ca can be of nonsilicate origin, a likely source being carbonates in basalts and sediments.The chemical and silicate weathering rates of the west flowing rivers of the Deccan are ∼4 times higher than the east flowing rivers. This difference is due to the correspondingly higher rainfall and runoff in the western region and thus reemphasises the dominant role of runoff in regulating weathering rates. The silicon weathering rate (SWR) in the Krishna Basin is ∼15 t km−2 y−1, within a factor of ∼2 to those in the Yamuna, Bhagirathi, and Alaknanda basins of the Himalaya, suggesting that under favourable conditions (intense physical weathering, high runoff) granites and the other silicates in the Himalaya weather at rates similar to those of Deccan basalts. The CO2 consumption rate for the Deccan is deduced to be ∼3.6 × 105 moles km−2 y−1 based on the SWR. The rate, though, is two to three times lower than reported for the NTW rivers system; it still reinforces the earlier findings that, in general, basalts weather more rapidly than other silicates and that they significantly influence the atmospheric CO2 budget on long-term scales.  相似文献   

17.
Jin, Z. D., Bickle, M. J., Chapman, H. J., Yu, J., An, Z., Wang, S. & Greaves, M. J. 2010: Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid‐Pleistocene Indian monsoon and catchment weathering. Boreas, 10.1111/j.1502‐3885.2010.00184.x. ISSN 0300‐9483 Lacustrine sediment serves as a valuable archive for tracing catchment weathering processes associated with past climatic and/or tectonic changes. High‐resolution records of fossil ostracod Mg/Ca, Sr/Ca and 87Sr/86Sr ratios from a lake sediment core from the central Tibetan Plateau reveal a temporal link between lake‐water chemistry and catchment weathering and distinct monsoonal oscillations over the early to mid‐Pleistocene. Between 2.01 and 0.95 Ma, lake‐water chemistry was dominated by a high proportion of carbonate weathering related to variations in the Indian monsoon, resulting in relatively low and constant ostracod 87Sr/86Sr but obvious fluctuations in Mg/Ca, Sr/Ca and δ18O. Across the mid‐Pleistocene transition (MPT), a significant increase in 87Sr/86Sr and frequently fluctuating ratios of ostracod Mg/Ca, Sr/Ca and δ18O are coincident with increases in both Chinese loess grain size and Arabian Sea lithogenic flux. This correlation indicates an increased glaciation and a strong monsoon seasonal contrast over the plateau. The increase in lake‐water 87Sr/86Sr across the MPT highlights a change in catchment weathering patterns, rather than one in climate‐enhanced weathering intensity, with an increased weathering of 87Sr‐rich minerals potentially induced by marked extensive glaciation and strong seasonality in the central plateau.  相似文献   

18.
Ge/Si and 87Sr/86Sr data from primary and secondary minerals, soil waters, and stream waters in a tropical granitoid catchment quantitatively reflect mineral alteration reactions that occur at different levels within the bedrock–saprolite–soil zone. Near the bedrock–saprolite interface, plagioclase to kaolinite reaction yields low Ge/Si and 87Sr/86Sr. Higher in the regolith column, biotite weathering and kaolinite dissolution drive Ge/Si and 87Sr/86Sr to high values. Data from streams at base flow sample the bedrock–saprolite interface zone, while at high discharge solutes are derived from upper saprolite–soil zone. Coupled Ge/Si and 87Sr/86Sr can be effective tools for quantifying the importance of specific weathering reactions, and for geochemical hydrograph separation.  相似文献   

19.
Lake water, river water, and groundwater from the Lake Qinghai catchment in the northeastern Tibetan Plateau, China have been analyzed and the results demonstrate that the chemical components and 87Sr/86Sr ratios of the waters are strictly constrained by the age and rock types of the tributaries, especially for groundwater. Dissolved ions in the Lake Qinghai catchment are derived from carbonate weathering and part from silicate sources. The chemistry of Buha River water, the largest tributary within the catchment, underlain by the late Paleozoic marine limestone and sandstones, constrains carbonate-dominated compositions of the lake water, being buffered by the waters from the other tributaries and probably by groundwater. The variation of 87Sr/86Sr ratios with cation concentrations places constraint on the Sr-isotopic compositions of the main subcatchments surrounding Lake Qinghai. The relative significance of river-water sources from different tributaries (possibly groundwater as well) in controlling the Sr distribution in Lake Qinghai provides the potential to link the influence of hydrological processes to past biological and physical parameters in the lake. The potential role of groundwater input in the water budget and chemistry of the lake emphasizes the need to further understand hydrogeological processes within the Lake Qinghai system.  相似文献   

20.
Grasslands of north-central Kansas are underlain by carbonate aquifers and shale aquitards. Chemical weathering rates in carbonates are poorly known, and, because large areas are underlain by these rocks, solute fluxes are important to estimating global weathering rates. Grasslands exist where the amount of precipitation is extremely variable, both within and between years, so studies in grasslands must account for changes in weathering that accompany changes in precipitation. This study: (1) identifies phases that dominate chemical fluxes at Konza Prairie Biological Station (KPBS) and Long-Term Ecological Research Site, and (2) addresses the impact of variable precipitation on mineral weathering. The study site is a remnant tallgrass prairie in the central USA, representing baseline weathering in a mid-temperate climate grassland.Groundwater chemistry and hydrology in the 1.2 km2 watershed used for this study suggest close connections between groundwater and surface water. Water levels fluctuate seasonally. High water levels coincide with periods of precipitation plus low evapotranspiration rather than during precipitation peaks during the growing season. Precipitation is concentrated before recharging aquifers, suggesting an as yet unquantified residence time in the thin soils.Groundwater and surface water are oversaturated with respect to calcite within limitations of available data. Water is more dilute in more permeable aquifers, and water from one aquifer (Morrill) is indistinguishable from surface water. Cations other than Ca co-vary with each other, especially Sr and Mg. Potassium and Si co-vary in all aquifers and surface water, and increases in concentrations of these elements are the best indicators of silicate weathering at this study site. Silicate-weathering indices correlate inversely to aquifer hydraulic conductivity.87Sr/86Sr in water ranges from 0.70838 to 0.70901, and it decreases with increasing Sr concentration and with increasing silicate-weathering index. Carbonate extracted from aquifer materials, shales, soil, and tufa has Sr ranging from about 240 (soil) to 880 ppm (Paleozoic limestone). 87Sr/86Sr ranges from 0.70834 ± 0.00006 (limestone) to 0.70904 ± 0.00019 (soil). In all cases, 87Sr/86Sr of aquifer limestone is lower than 87Sr/86Sr of groundwater, indicating a phase in addition to aquifer carbonate is contributing solutes to water.Aquifer recharge controls weathering: during periods of reduced recharge, increased residence time increases the total amount of all phases dissolved. Mixing analysis using 87Sr/86Sr shows that two end members are sufficient to explain sources of dissolved Sr. It is proposed that the less radiogenic end member is a solution derived from dissolving aquifer material; longer residence time increases its contribution. The more radiogenic end member solution probably results from reaction with soil carbonate or eolian dust. This solution dominates solute flux in all but the least permeable aquifer and demonstrates the importance that land-surface and soil-zone reactions have on groundwater chemistry in a carbonate terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号