首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– We present NanoSIMS four‐isotope S analyses of 24 comet Wild 2 dust impact residues in craters on aluminum foil C2037N returned by NASA’s Stardust mission. Except for one sample, all impact residues have normal S isotopic compositions within 2σ uncertainties of at least two S isotope ratios. This implies that most S‐rich Wild 2 dust impactors formed in the solar system. Instrumental isotope fractionation due to sample topography is the main contribution to our analytical uncertainty. One impact crater residue shows small anomalies of δ33S = ?57 ± 17‰, and δ34S = ?41 ± 17‰ (1σ uncertainties). Although this could be simply a statistical outlier or the fingerprint of a chemical isotope fractionation it is also possible that the observed anomaly results from the mixture of a cometary FeS particle with a small (150 nm diam.) presolar FeS supernova grain. This would translate into a presolar sulfide abundance of approximately 200 ppm.  相似文献   

2.
Abstract— –CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high‐performance liquid chromatography with UV fluorescence detection (HPLC‐FD) and gas chromatography–mass spectrometry (GC‐MS). Our data show that EET 92042 and GRA 95229 are the most amino acid–rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α‐amino acids glycine, isovaline, α‐aminoisobutyric acid (α‐AIB), and alanine, with δ13C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α‐AIB and β‐alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.  相似文献   

3.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

4.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

5.
Abstract– Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound‐specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α‐H, α‐NH2 amino acids that correspond to predictions made for formation via Strecker‐cyanohydrin synthesis. We also observe light δ13C signatures for β‐alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight‐chain, amine‐terminal amino acids (n‐ω‐amino acids). Higher deuterium enrichments are observed in α‐methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent‐body chemistry.  相似文献   

6.
Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondrites but are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal‐rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment (PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675 (CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time‐of‐flight mass spectrometry and fluorescence, and gas chromatography isotope ratio mass spectrometry. The δ13C/12C ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (13–16 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.2–2 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of β‐, γ‐, and δ‐amino acids compared to the corresponding α‐amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.  相似文献   

7.
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate.  相似文献   

8.
Abstract— It is reasonable to expect that cometary samples returned to Earth by the Stardust space probe have been altered to some degree during capture in aerogel at 6.1 km/s. In order to help interpret the measured structure of these particles with respect to their original cometary nature, a series of coal samples of known structure and chemical composition was fired into aerogel at Stardust capture velocity. This portion of the study analyzed the surfaces of aerogel‐embedded particles using Raman spectroscopy. Results show that particle surfaces are largely homogenized during capture regardless of metamorphic grade or chemical composition, apparently to include a devolatilization step during capture processing. This provides a possible mechanism for alteration of some aliphatic compound‐rich phases through devolatilization of cometary carbonaceous material followed by re‐condensation within the particle. Results also show that the possibility of alteration must be considered for any particular Stardust grain, as examples of both graphitization and amorphization are found in the coal samples. It is evident that Raman G band (~1580 cm?1) parameters provide a means of characterizing Stardust carbonaceous material to include identifying those grains which have been subjected to significant capture alteration.  相似文献   

9.
Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low‐Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low‐Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high‐Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low‐Ti mare basalt 15555, the highest concentrations of Li occur in late‐stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low‐ and high‐Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low‐Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high‐Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large‐degree, high‐temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late‐stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile‐poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between ?2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.  相似文献   

10.
Compound‐specific carbon isotope analysis (δ13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker‐cyanohydrin synthesis in the early solar system. Previous δ13C investigations have targeted α‐amino acid and α‐hydroxy acid Strecker products and reactant HCN; however, δ13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification, and δ13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde, and acetone, were detected in the sample. δ13C values, ranging from ?10.0‰ to +66.4‰, were more 13C‐depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13C‐depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g., oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between δ13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration‐driven chemical pathways.  相似文献   

11.
Abstract– The isotope fractionation of Zn in meteorites has been measured for the first time using thermal ionization mass spectrometry and a double spiking technique. The magnitude of δZn ranged from ?0.29 to +0.38‰ amu?1 for five stone meteorites whereas the iron meteorite Canyon Diablo displays δZn of 1.11 ± 0.11‰ amu?1. The results for chondrites in this work can be divided into positive and negative δZn, supporting a previous proposal that chondrites are a mixture of materials from two different temperature sources. The Zn isotope fractionation present in meteorites may represent a primordial heterogeneity formed in the early solar system. An anomalous isotopic composition of Zn obtained for the Redfields iron meteorite suggests large‐scale inherited isotope heterogeneity of the protosolar nebula, or the presence of a parent body that has formed within its own isotopically anomalous reservoir. These anomalies are in the same direction but smaller than nuclear field shift effects observed in chemical exchange reactions. The isotope dilution mass spectrometry (IDMS) technique was used to measure Zn concentration, yielding a range from 20.1 μg g?1 to 302 μg g?1 in five stone meteorites and from 0.019 to 26 μg g?1 in seven iron meteorites. The IDMS‐measured abundance of Zn in Orgueil is 302 ± 14 μg g?1 and should be considered for future compilations of the abundance of Zn in the solar system.  相似文献   

12.
Precise triple oxygen isotope compositions of 32 Allende bulk chondrules (ABCs) are determined using laser‐assisted fluorination mass spectrometry. Various chemically characterized chondrule types show ranges in δ18O that vary from ?4.80‰ to +1.10‰ (porphyritic olivine; PO, N = 15), ?3.10‰ to +1.50‰ (porphyritic olivine pyroxene; POP, N = 9), ?3.40‰ to +2.60‰ (barred olivine; BO, N = 4), and ?3.60‰ to +1.30‰ (porphyritic pyroxene; PP, N = 3). Oxygen isotope data of these chondrules yield a regression line referred to as the Allende bulk chondrule line (ABC line, slope = 0.86 ± 0.02). Most of our data fall closer to the primitive chondrule minerals line (PCM line, slope = 0.987 ± 0.013) and the carbonaceous chondrite anhydrous mineral line (CCAM line, slope = 0.94 ± 0.02) than the Allende anhydrous mineral line (AAML, slope = 1.00 ± 0.01) with a maximum δ18O value (+2.60‰) observed in a BO chondrule and a minimum δ18O value (?4.80‰) shown by a PO chondrule. Similarly, these chondrules depict variable ?17O values that range from ?5.65‰ to ?3.25‰ (PO), ?4.60‰ to ?2.80‰ (POP), ?4.95‰ to ?3.00‰ (BO), ?5.30‰ to ?3.20‰ (PP), and ?4.90‰ (CC). A simple model is proposed for the Allende CV3 chondrite with reference to the AAML and PCM line to illustrate the isotopic variations occurred due to the aqueous alteration processes. The estimated temperature ranging from 10 to 130 °C (mean ~60 °C) implies that the secondary mineralization in Allende happened in a warmer and relatively dry environment compared to Murchison. We further propose that thermal metamorphism could have dehydrated the Allende matrix at temperatures between >150 °C and <600 °C.  相似文献   

13.
The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography‐mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot‐water extracts with high relative abundances of β‐alanine and γ‐amino‐n‐butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight‐chained amine‐terminal n‐ω‐amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of ?24‰ ± 6‰ for β‐alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n‐ω‐amino acids may be due to a high temperature Fischer‐Tropsch‐type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.  相似文献   

14.
Abstract— Isotopic analysis of nesquehonite recovered from the surface of the LEW 85320 H5 ordinary chondrite shows that the δ13C and δ18O values of the two generations of bicarbonate (Antarctic and Texas) are different: δ13C = +7.9‰ and +4.2‰; δ18O = +17.9‰ and + 12.1‰ respectively. Carbon isotopic compositions are consistent with equilibrium formation from atmospheric carbon dioxide at ?2 ± 4 °C (Antarctic) and +16 ± 4 °C (Texas). Oxygen isotopic data imply that the water required for nesquehonite precipitation was derived from atmospheric water vapour or glacial meltwater which had locally exchanged with silicates, either in the meteorite or in underlying bedrock. Although carbonates with similar δ13C values have been identified in the SNC meteorites EETA 79001 and Nakhla, petrographic and temperature constraints argue against their simply being terrestrial weathering products.  相似文献   

15.
Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC‐ICP‐MS, and obtained the first precise δ187Re values (~±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by ~0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic‐ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre‐GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume‐dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass‐dependent fractionation is elusive. The magnitude of a nucleosynthetic s‐process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.  相似文献   

16.
High‐precision Zn isotopic compositions measured by MC‐ICP‐MS are documented for 32 iron meteorites from various fractionally crystallized and silicate‐bearing groups. The δ66Zn values range from ?0.59‰ up to +5.61‰ with most samples being slightly enriched in the heavier isotopes compared with carbonaceous chondrites (0 < δ66Zn < 0.5). The δ66Zn versus δ68Zn plot of all samples defines a common linear fractionation line, which supports the hypothesis that Zn was derived from a single reservoir or from multiple reservoirs linked by mass‐dependent fractionation processes. Our data for Redfields fall on a mass fractionation line and therefore refute a previous claim of it having an anomalous isotopic composition due to nonmixing of nucleosynthetic products. The negative correlation between δ66Zn and the Zn concentration of IAB and IIE is consistent with mass‐dependent isotopic fractionation due to evaporation with preferential loss of lighter isotopes in the vapor phase. Data for the Zn concentrations and isotopic compositions of two IVA samples demonstrate that volatile depletion in the IVA parent body is not likely the result of evaporation. This is important evidence that favors the incomplete condensation origin for the volatile depletion of the IVA parent body.  相似文献   

17.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

18.
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. A suite of two‐ to six‐carbon aliphatic primary amino acids was identified in the Aguas Zarcas and Murchison meteorites with abundances ranging from ~0.1 to 158 nmol/g. The high relative abundances of α‐amino acids found in these meteorites are consistent with a Strecker‐cyanohydrin synthesis on these meteorite parent bodies. Amino acid enantiomeric and carbon isotopic measurements in both fragments of the Aguas Zarcas meteorites indicate that both samples experienced some terrestrial protein amino acid contamination after their fall to Earth. In contrast, similar measurements of alanine in Murchison revealed that this common protein amino acid was both racemic (D ≈ L) and heavily enriched in 13C, indicating no measurable terrestrial alanine contamination of this meteorite. Carbon isotope measurements of two rare non‐proteinogenic amino acids in the Aguas Zarcas and Murchison meteorites, α‐aminoisobutyric acid and D‐ and L‐isovaline, also fall well outside the typical terrestrial range, confirming they are extraterrestrial in origin. The detections of non‐terrestrial L‐isovaline excesses of ~10–15% in both the Aguas Zarcas and Murchison meteorites, and non‐terrestrial L‐glutamic acid excesses in Murchison of ~16–40% are consistent with preferential enrichment of circularly polarized light generated L‐amino acid excesses of conglomerate enantiopure crystals during parent body aqueous alteration and provide evidence of an early solar system formation bias toward L‐amino acids prior to the origin of life.  相似文献   

19.
Oxygen isotope and chemical measurements were carried out on 25 samples of Libyan Desert Glass (LDG), 21 samples of sandstone, and 3 of sand from the same area. The δ18O of LDG samples range from 9.0‰ to 11.9‰ (Vienna Standard Mean Ocean Water [VSMOW]); some correlations between isotope data and typological features of the LDG samples are pointed out. The initial δ18O of a bulk parent material may be slightly increased by fusion due to the loss of isotopically light pore water with no isotope exchange with oxygen containing minerals. Accordingly, the δ18O of the bulk parent material of LDG may have been about 9.0 ± 1‰ (VSMOW). The measured bulk sandstone and sand samples have δ18O values ranging from 12.6‰ to 19.5‰ and are consequently ruled out as parent materials, matching the results of previous studies. However, separated quartz fractions have δ18O values compatible with the LDG values suggesting that the modern surface sand inherited quartz from the target material. This hypothesis fits previous findings of lechatelierite and baddeleyite in these materials. As the age of the parent material reported in previous studies is Pan‐African, we measured the δ18O values of bulk rock and quartz from intrusives of Pan‐African age and the results obtained were compatible with the LDG values. The main element abundances (Fe, Mg, Ca, K, Na) in our LDG samples conform to previous estimates; Fe, Mg, and K tend to be higher in heterogeneous samples with dark layers. The hypothesis of a low‐altitude airburst involving silica‐rich surface materials deriving from weathered intrusives of Pan‐African age, partially melted and blown over a huge surface by supersonic winds matches the results obtained.  相似文献   

20.
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s?1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号