首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shape of pulsar radio beams   总被引:1,自引:0,他引:1  
Using all available multicomponent radio pulse profiles for pulsars with medium to long periods and good polarization data, we have constructed a two-dimensional image of the mean radio beam shape. This shows a peak near the centre of the beam but is otherwise relatively uniform with only mild enhancements in a few regions. This result supports the patchy beam model for emission beams, in which the mean beam shape represents the properties of the emission mechanism and observed pulse components result from emission sources distributed randomly across the beam.  相似文献   

2.
I present pointed ROSAT PSPC observations of the pre-cataclysmic binary V471 Tauri. The hard X-ray emission (>0.4 keV) is not eclipsed by the K star, demonstrating conclusively that this component cannot be emitted by the white dwarf. Instead I show that its spectrum and luminosity are consistent with coronal emission from the tidally spun-up K star. The star is more active than other K stars in the Hyades, but equally active as K stars in the Pleiades with the same rotation periods, demonstrating that rotation — and not age — is the key parameter in determining the level of stellar activity.   The soft X-ray emission (<0.4 keV) is emitted predominately by the white dwarf and is modulated on its spin period. I find that the pulse profile is stable on time-scales of hours and years, supporting the idea that it is caused by the opacity of accreted material. The profile itself shows that the magnetic field configuration of the white dwarf is dipolar and that the magnetic axis passes through the centre of the star.   There is an absorption feature in the light curve of the white dwarf, which occurs at a time when our line of sight passes within a stellar radius of the K star. The column density and duration of this feature imply a volume and mass for the absorber that are similar to those of coronal mass ejections of the Sun.   Finally I suggest that the spin–orbit beat period detected in the optical by Clemens et al. may be the result of the interaction of the K-star wind with the magnetic field of the white dwarf.  相似文献   

3.
It is of great importance to study pulsar beam shape if we are concerned with emission theories and pulsar birth rate.Both observations and the ICS model show that different emission components are emitted from different heights.The relative longitude phase shifts due to different heights of the emission components and the toridal velocity of the electrons are considered in this paper.Several pos-sible observational effects arising from the phase shift are presented.The emission beams may not have circular cross section although the emission region may be symmetric with respect to the magnetic axis.  相似文献   

4.
The generation of hydrodynamic radiation in interactions of pulsed proton and laser beams with matter is explored. The beams were directed into a water target and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed with varying pulse energies, sensor positions, beam diameters and temperatures. The obtained data are matched by simulation results based on the thermo-acoustic model with uncertainties at a level of 10%. The results imply that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the medium. The heating results in a fast expansion or contraction and a pressure pulse of bipolar shape is emitted into the surrounding medium. An interesting, widely discussed application of this effect could be the detection of ultra-high energetic cosmic neutrinos in future large-scale acoustic neutrino detectors. For this application a validation of the sound generation mechanism to high accuracy, as achieved with the experiments discussed in this article, is of high importance.  相似文献   

5.
Pulsar radio emission beams have been studied observationally for a long time, and the suggestion is that they consist of the so-called core and conal components. To reproduce these components is a challenge for any emission model, and that the pulse profile of pulsars changes with frequency presents even a greater challenge. Assuming a local surface magnetic structure (to produce the core or central beam) and a global dipole magnetic field (to produce the conal beams), Gil & Krawczyk (1997) applied curvature radiation to the pulse profile simulation of PSR J0437-4715 (hereafter the GK model). Here we present an alternative multi-frequency simulation of the same profiles within the framework of the Inverse Compton Scattering (ICS) model. It is obtained from our simulation (1) that besides the core, the inner cone and the outer cone, there is an outer-outer cone; (2) that the emission components of the core and cones evolve strongly with frequency. Some important differences between the ICS model and the  相似文献   

6.
Polarization observations of 66 southern pulsars   总被引:1,自引:0,他引:1  
Mean pulse profiles and polarization parameters at 435, 660 or 1500 MHz obtained using the ATNF Parkes radio telescope are presented for 66 southern pulsars. About half of these pulsars were discovered in the Parkes southern pulsar survey and most have no previously published polarization parameters. Where possible, beam impact parameters and inclination angles are computed assuming a circular beam geometry and the rotating-vector model. Implications of the results for models of the pulse emission mechanism are briefly discussed.  相似文献   

7.
The induced Compton scattering of radio emission off the particles of the ultrarelativistic electron–positron plasma in the open field line tube of a pulsar is considered. We examine the scattering of a bright narrow radio beam into the background over a wide solid angle and specifically study the scattering in the transverse regime, which holds in a moderately strong magnetic field and gives rise to the scattered component nearly antiparallel to the streaming velocity of the scattering particles. Making use of the angular distribution of the scattered intensity and taking into account the effect of rotational aberration in the scattering region, we simulate the profiles of the backscattered components as applied to the Crab pulsar. It is suggested that the interpulse (IP), the high-frequency interpulse (IP') and the pair of so-called high-frequency components (HFC1 and HFC2) result from the backward scattering of the main pulse (MP), precursor (PR) and low-frequency component (LFC), respectively. The components of the high-frequency profiles, the IP' and HFCs, are interpreted for the first time. The HFC1 and HFC2 are argued to be a single component split by the rotational aberration close to the light cylinder. It is demonstrated that the observed spectral and polarization properties of the profile components of the Crab pulsar as well as the giant pulse phenomenon outside the MP can be explained in terms of our model.  相似文献   

8.
We report on 685-MHz observations of PSR J1823–3021A using the Parkes radio telescope. A total of 120 giant pulses (GPs) were found by searching for spiky emission at 16-μs time resolution. The energies of these pulses follow a power law that has a very steep exponent of −3.1. This means that the emission mechanism that gives rise to the GPs almost always produces pulses that only have moderate energies. The profile formed by adding all the GPs has components that are narrower and more widely separated than the profile formed from all pulses. Aberration and retardation of emission from a corotating volume mean that components emitted at high altitude will have asymmetric phases compared to those emitted at low altitude. By assuming that the components of the pulse profile form conal pairs, we use this effect to limit the GPs to be emitted no higher than 4 km above ordinary emission. The arrival times of the GPs are well modelled by Poisson statistics at time-scales around 100 s. We report a GP with spikes of emission at the phases of both components. The probability of two independent GPs occurring within a single pulse period is     , so an interpretation can be conjectured that the two pulses are not independent. This may mean that the magnetosphere can remain in a state that is susceptible to discrete 'giant' emission events for as long as 2 ms.  相似文献   

9.
10.
The propagation of an instantaneous burst of nonpolarized isotropic radiation from the time of its onset at some redshift z 0 to the time of its recording at the present epoch is considered within the framework of a flat cosmological model. Thomson (Rayleigh) scattering by free electrons is believed to be the only source of opacity. The spatial distributions of the mean (over the directions) radiation intensity as well as the angular distributions of the radiation intensity and polarization at various distances from the burst center have been constructed. The mean intensity profile normalized to the total number of photons emitted during the burst is shown to depend weakly on the initial conditions (the burst time z 0, the width and shape of the initial radiation distribution) at fairly high z 0 (≥1400). As regards the angular intensity and polarization distributions, they turn out to be rather narrow (3–10 arcmin), while the polarization can reach 70%. On average, the expected polarization can be about 15%.  相似文献   

11.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

12.
Under the geometrical optics approximation we discuss the propagation of a polarized magnetic profile, made up of Alfvén waves, in the solar wind. We show that (i) the profile propagates at an angle to the radial direction (the direction of the solar wind flow), (ii) the radial half-width of the profile stays essentially constant, or even diminishes a little, with distance from the Sun, (iii) the half-width in a direction transverse to the radial direction increases without limit as the magnetic profile moves outward from the Sun. Thus the profile stretches out into a ‘ribbon’ which could, of course, be experimentally identified as a discontinuity. We also give equations for the variation of polarization of the profile, and illustrate the behavior of polarization in a simple case. We have done these calculations to show that the production of ‘discontinuities’ in the solar wind can arise from propagation effects on irregularly shaped ‘blobs’ of magnetic field, as well as from other causes.  相似文献   

13.
It has been postulated that electron bremsstrahlung in a strong external magnetic field is the dominant radiation mechanism within the accretion plasma near the magnetic polar regions of binary X-ray sources. Earlier works on the cross section for such a process proved to be unsatisfactory.The present work uses the simple structure of the propagator obtained in a previous calculation for mildly relativistic electrons occupying no more than the first few Landau levels. Particular emphasis is put on the integration over the possible range of momentum transfer during a single collision with the ion. Typical behaviour for two linear polarization modes is illustrated for forward and backward electron scattering. It is found that the previously predicted behaviour at low frequencies for the two modes is only correct in the limit of weak field and large momentum transfer. At higher frequencies resonances are present irrespective of the polarization of the emitted radiation.  相似文献   

14.
On the basis of issues raised by observations of BL Lac objects and the qualitative jet model proposed by Bakeret al. in 1988, we have been led to consider the quantitative role of coherent, stimulated emission in jets and construct a new jet model of blazars in which a relativistic electron beam with an axial symmetric, power-law distribution is injected from the central engine into the jet plasma. We study quantitatively the synchrotron emission of the relativistic electron beams. Using the weak turbulent theory of plasma, we discuss the interaction between relativistic electron beams and jet plasma, and the roles of stimulated emission. The main results are:
  1. The synchrotron emission increases sensitively with the increase of the angle between the direction of the beam and the magnetic field. When the direction of the beam is vertical to the magnetic field, the synchrotron emission reaches its maximum, i.e. the emitted waves are beamed in the direction of the jet axis. We suggest that radio selected BL Lac objects belong to this extreme classification.
  2. The synchrotron emission of the relativistic beam increases rapidly with the increase of the Lorentz factor of the relativistic electron,γ, whenγ ≤ 22.5, then decreases rapidly with increase ofγ.
  3. The stimulated emission also increases with increasing Lorentz factorγ of the relativistic electrons whenγ ≤ 35 and then decreases with the increasingγ. The maximum stimulated emission and the maximum synchrotron emission occur at different frequencies. Stimulated emission is probably very important and reasonable flare mechanism in blazars.
  4. The rapid polarization position angle (PA) swings may arise from the interaction between the relativistic electron beam and the turbulent plasma.
  相似文献   

15.
Stairs, Lyne & Shemar have found that the arrival-time residuals from PSR B1828−11 vary periodically with a period ≈500 d. This behaviour can be accounted for by precession of the radio pulsar, an interpretation that is reinforced by the detection of variations in its pulse profile on the same time-scale. Here, we model the period residuals from PSR B1828−11 in terms of precession of a triaxial rigid body. We include two contributions to the residuals: (i) the geometric effect, which arises because the times at which the pulsar emission beam points towards the observer varies with precession phase; and (ii) the spin-down contribution, which arises from any dependence of the spin-down torque acting on the pulsar on the angle between its spin     and magnetic     axes. We use the data to probe numerous properties of the pulsar, most notably its shape, and the dependence of its spin-down torque on     , for which we assume the sum of a spin-aligned component (with a weight  1 − a   ) and a dipolar component perpendicular to the magnetic beam axis (weight a ), rather than the vacuum dipole torque  ( a = 1)  . We find that a variety of shapes are consistent with the residuals, with a slight statistical preference for a prolate star. Moreover, a range of torque possibilities fit the data equally well, with no strong preference for the vacuum model. In the case of a prolate star, we find evidence for an angle-dependent spin-down torque. Our results show that the combination of geometrical and spin-down effects associated with precession can account for the principal features of the timing behaviour of PSR B1828−11, without fine tuning of the parameters.  相似文献   

16.
A new method is proposed to determine all components of the solar magnetic fields using the cumulants of the profile of a magnetic sensitive line. The method is based on polarization measurements in a number of points of the line profile and subsequent calculation of the amplitudes and phases of its two first Fourier-harmonics.  相似文献   

17.
We analyze the observations of the X-ray pulsar KS 1947+300 performed by the INTEGRAL and RXTE observatories over a wide (3–100 keV) X-ray energy range. The shape of the pulse profile was found to depend on the luminosity of the source. Based on the model of a magnetized neutron star, we study the characteristics of the pulsar using the change in its spin-up rate. We estimated the magnetic field strength of the pulsar and the distance to the binary.  相似文献   

18.
We calculate the profile and polarization of the Lα line in the solar corona. Coronal temperature variation, solar wind and other non-thermal motions have been taken into account. Because of the relatively low atomic weight of hydrogen the profile of the Lα line is a sensitive indicator of the coronal temperature. The line polarization contains relatively little information except for strong magnetic fields (> 70 G).  相似文献   

19.
On the hypothesis that the time profile of a type III burst corresponds directly to the flux of electron beam, the similarity of time profile is shown to be maintained even if the electron velocity decreases with distance provided that the time is normalized to unity at the time of maximum flux. The observed time profiles of type III bursts with simple shape seem to follow the similarity law in almost all frequency range. This evidence may indicate that the time profile, both the rising and decaying phases, of a type III burst should be attributed to a common origin, e.g., the time variation of exciter determined by the initial velocity distribution in the electron beam, instead of attributing the rising time to the beam length and the decay time to the damping of plasma waves after the passage of the electron beam.  相似文献   

20.
Polarization-based line spectroscopy is a valuable tool in determining the characteristics of electron distribution functions in anisotropic plasmas. For instance, directional electrons can unevenly populate the magnetic sublevels of atomic energy levels resulting in partial polarization of the emitted spectral lines. The large dimensions of astrophysical sources raise the possibility of non-negligible self-absorption effects on spectral line properties. Alternatively, the high densities characteristic of laser-produced laboratory plasmas can also result in substantial optical depth values. We present a modeling study of He-like Fe line emissions in which we investigate the effects of radiation transport on the polarization of selected spectral lines under corona conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号