首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Climate changes and recent glacier behaviour in the Chilean Lake District   总被引:1,自引:1,他引:0  
Atmospheric temperatures measured at the Chilean Lake District (38°–42°S) showed contrasting trends during the second half of the 20th century. The surface cooling detected at several meteorological stations ranged from − 0.014 to − 0.021 °C a− 1, whilst upper troposphere (850–300 gpm) records at radiosonde of Puerto Montt (41°26′S/73°07′W) revealed warming between 0.019 and 0.031 °C a− 1. Regional rainfall data collected from 1961 to 2000 showed the overall decrease with a maximum rate of − 15 mm a− 2 at Valdivia st. (39°38′S/73°05′W). These ongoing climatic changes, especially the precipitation reduction, seem to be related to El Niño–Southern Oscillation (ENSO) phenomena which has been more frequent after 1976. Glaciers within the Chilean Lake District have significantly retreated during recent decades, in an apparent out-of-phase response to the regional surface cooling. Moreover, very little is known about upper troposphere changes and how they can enhance the glacier responses. In order to analyse their behaviour in the context of the observed climate changes, Casa Pangue glacier (41°08′S/71°52′W) has been selected and studied by comparing Digital Elevation Models (DEMs) computed at three different dates throughout the last four decades. This approach allowed the determination of ice elevation changes between 1961 and 1998, yielding a mean thinning rate of − 2.3 ± 0.6 m a− 1. Strikingly, when ice thinning is computed for the period between 1981 and 1998, the resulting rate is 50% higher (− 3.6 ± 0.6 m a− 1). This enhanced trend and the related area loss and frontal retreat suggests that Casa Pangue might currently be suffering negative mass balances in response to the upper troposphere warming and decreased precipitation of the last 25–30 yr, as well as debris cover would not prevent the glacier from a fast reaction to climate forcing. Most of recent glaciological studies regarding Andean glaciers have concentrated on low altitude changes, namely frontal variations, however, in order to better understand the regional glacier changes, new data are necessary, especially from the accumulation areas.  相似文献   

2.
This paper presents data concerning recent (1990–2007) surface morphological and ice-dynamical changes on the Tasman Glacier, New Zealand. We use remote-sensing data to derive rates of lake growth, glacier velocities and rates of glacier surface lowering. Between 1990 and 2007, the glacier terminus receded ~ 3.5 km and a large ice-contact proglacial lake developed behind the outwash head. By 2007 the lake area was ~ 6 km2 and had replaced the majority of the lowermost 4 km of the glacier tongue. There is evidence that lake growth is proceeding at increasing rates — the lake area doubled between 2000 and 2007 alone. Measured horizontal glacier velocities decline from 150 m a− 1 in the upper glacier catchment to almost zero at the glacier terminus and there is a consequent down-glacier increase in surface debris cover. Surface debris mapping shows that a large catastrophic rockfall onto the glacier surface in 1991 is still evident as a series of arcuate debris ridges below the Hochstetter icefall. Calculated glacier surface lowering is most clearly pronounced around the terminal area of the glacier tongue, with down-wasting rates of 4.2 ± 1.4 m a− 1 in areas adjacent to the lateral moraine ridges outside of the current lake extent. Surface lowering rates of approximately 1.9 ± 1.4 m a− 1 are common in the upper areas of the glacier. Calculations of future lake expansion are dependent on accurate bathymetric and bed topography surveys, but published data indicate that a further 8–10 km of the glacier is susceptible to calving and further lake development in the future.  相似文献   

3.
Airborne laser altimetry survey of Glaciar Tyndall, Patagonia   总被引:1,自引:1,他引:0  
The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser–INS–GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of − 3.1 ± 1.0 m a− 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of − 7.7 ± 1.0 m a− 1 at the calving front at 50 m a.s.l. and minimum values of between − 1.0 and − 2.0 ± 1.0 m a− 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at  600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of − 3.2 m a− 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239–247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation changes in Patagonia, where an ice thinning acceleration trend has been observed during recent years, presumably in response to warming and possibly also drier conditions.  相似文献   

4.
Seasonal snow covers the tundra surface for up to nine months of each year on the Alaskan North Slope. Variations in the snow thickness could strongly influence the thermal regime of the underlying soil and permafrost, and the surface energy balance. The impacts of increases and decreases in the tundra snow thickness on the thermal regime of snow surface, active layer, and permafrost, and on the conductive heat flow to the atmosphere were investigated numerically, by using an improved surface energy balance approach based one-dimensional heat transfer model. The baseline inputs for the numerical model are mean daily meteorological data and surface albedos collected at Barrow, Alaska from 1995 through 1999. Based on a study for the long-term mean daily maximum and minimum snow thickness distributions at Barrow in the snow season of 1948 through 1997, a snow thickness factor was defined and five simulation cases were run for the snow season of 1997–1998 by changing the snow thickness factor. The modeled results indicate that changes in snow thickness have significant impacts on ground thermal regimes and conductive heat flow to the atmosphere. Decreasing the snow thickness by 50% led to the maximum ground temperature decrease of 1.48 °C at 0.29 m depth, and 0.72 °C at 3.0 m depth; the magnitude of the mean conductive heat flow to the atmosphere for December increase of 4.3 Wm− 2. Increasing the snow thickness by 50% resulted in the maximum ground temperature increase of 1.44 °C at 0.29 m depth, and 0.66 °C at 3.0 m depth; the magnitude of the mean conductive heat flow to the atmosphere for December decrease of 1.57 W m− 2. On an annual basis, variation in the snow thickness by 50%, the ground temperature variations of more than 0.25 °C occurred as deep as 8.0 m below the ground surface. The modeled results also show that changes in snow thickness have a relatively small influence on the snow surface temperature.  相似文献   

5.
Reconstruction of Mediterranean sea level fields for the period 1945–2000   总被引:1,自引:1,他引:0  
The distribution of sea level in the Mediterranean Sea is recovered for the period 1945–2000 by using a reduced space optimal interpolation analysis. The method involves estimating empirical orthogonal functions from satellite altimeter data spanning the period 1993–2005 that are then combined with tide gauge data to recover sea level fields over the period 1945–2000. The reconstruction technique is discussed and its robustness is checked through different tests. For the altimetric period (1993–2000) the prediction skill is quantified over the whole domain by comparing the reconstructed fields with satellite altimeter observations. For past times the skill can only be tested locally, by validating the reconstruction against independent tide gauge records. The reconstructed distribution of sea level trends for the period 1945–2000 shows a positive peak in the Ionian Sea (up to 1.5 mm yr− 1) and a negative peak of − 0.5 mm yr− 1 in a small area to the south-east of Crete. Positive trends are found nearly everywhere, being larger in the western Mediterranean (between 0.5 and 1 mm yr− 1) than in the eastern Mediterranean (between 0 and 0.5 mm yr− 1). The estimated rate of mean sea level rise for the period 1945–2000 is 0.7 ± 0.2 mm yr− 1, i.e. about a half of the rate estimated for global mean sea level. These overall results do not appear to be very sensitive to the distribution of tide gauges. The poorest results are obtained in open-sea regions with intense mesoscale variability not correlated with any tide gauge station, such as the Algerian Basin.  相似文献   

6.
This paper evaluates the suitability of readily available elevation data derived from recent sensors – the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) – for glaciological applications. The study area is Nevado Coropuna (6426 m), situated in Cordillera Ampato of Southern Peru. The glaciated area was 82.6 km2 in 1962, based on aerial photography. We estimate the glacier area to be ca. 60.8 km2 in 2000, based on analysis of the ASTER L1B scene.We used two 1:50,000 topographic maps constructed from 1955 aerial photography to create a digital elevation model with 30 m resolution, which we used as a reference dataset. Of the various interpolation techniques examined, the TOPOGRID algorithm was found to be superior to other techniques, and yielded a DEM with a vertical accuracy of ± 14.7 m. The 1955 DEM was compared to the SRTM DEM (2000) and ASTER DEM (2001) on a cell-by-cell basis. Steps included: validating the DEM's against field GPS survey points on rock areas; visualization techniques such as shaded relief and contour maps; quantifying errors (bias) in each DEM; correlating vertical differences between various DEM's with topographic characteristics (elevation, slope and aspect) and subtracting DEM elevations on a cell-by-cell basis.The RMS error of the SRTM DEM with respect to GPS points on non-glaciated areas was 23 m. The ASTER DEM had a RMS error of 61 m with respect to GPS points and displayed 200–300 m horizontal offsets and elevation ‘spikes’ on the glaciated area when compared to the DEM from topographic data.Cell-by-cell comparison of SRTM and ASTER-derived elevations with topographic data showed ablation at the toes of the glaciers (− 25 m to − 75 m surface lowering) and an apparent thickening at the summits. The mean altitude difference on glaciated area (SRTM minus topographic DEM) was − 5 m, pointing towards a lowering of the glacier surface during the period 1955–2000. Spurious values on the glacier surface in the ASTER DEM affected the analysis and thus prevented us from quantifying the glacier changes based on the ASTER data.  相似文献   

7.
Mean-sea-level data from coastal tide gauges in the north Indian Ocean were used to show that low-frequency variability is consistent among the stations in the basin. Statistically significant trends obtained from records longer than 40 years yielded sea-level-rise estimates between 1.06–1.75 mm yr− 1, with a regional average of 1.29 mm yr− 1, when corrected for global isostatic adjustment (GIA) using model data. These estimates are consistent with the 1–2 mm yr− 1 global sea-level-rise estimates reported by the Intergovernmental Panel on Climate Change.  相似文献   

8.
Accumulation of organic matter (OM) was studied in four ombrotrophic peat bogs in Finland: Harjavalta (vicinity of a Cu–Ni smelter), Outokumpu (near a closed Cu–Ni mine), Alkkia (Ni-treated site) and Hietajärvi (a pristine site). At each sampling site, two peat cores (15 × 15 × 100 cm) were taken. Age-dating of peat was determined using 210Pb method (CRS model). The local annual temperature sum and precipitation for the past 125 years were modeled. The objective was to compare recent net accumulation rates of heavy metal polluted ombrotrophic peat bogs with those of a pristine bog, and to study the relationship between weather and net accumulation rates. Based on 210Pb age-dating, the upper 16-cm peat layer at Harjavalta, 35 cm at Outokumpu and 25 cm at Hietajärvi represents 125 years of peat formation, yielding the following average peat accumulation rates: Harjavalta 1.3 mm year− 1, Outokumpu 2.8 mm year− 1 and Hietajärvi 2.0 mm year− 1. At the Alkkia site, the Ni treatment in 1962 had completely stopped the peat accumulation. Net accumulation rates were related to precipitation at Outokumpu, Harjavalta and Hietajärvi sites. In addition, emissions released from the nearby located Cu–Ni smelter could have affected negatively net OM accumulation rate at Harjavalta site.  相似文献   

9.
Long-term series of almost 14 years of altimetry data (1992–2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for  55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as − 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.  相似文献   

10.
Climatic changes over the Mediterranean basin in 2031–2060, when a 2 °C global warming is most likely to occur, are investigated with the HadCM3 global circulation model and their impacts on human activities and natural ecosystem are assessed. Precipitation and surface temperature changes are examined through mean and extreme values analysis, under the A2 and B2 emission scenarios. Confidence in results is obtained via bootstrapping. Over the land areas, the warming is larger than the global average. The rate of warming is found to be around 2 °C in spring and winter, while it reaches 4 °C in summer. An additional month of summer days is expected, along with 2–4 weeks of tropical nights. Increase in heatwave days and decrease in frost nights are expected to be a month inland. In the northern part of the basin the widespread drop in summer rainfall is partially compensated by a winter precipitation increase. One to 3 weeks of additional dry days lead to a dry season lengthened by a week and shifted toward spring in the south of France and inland Algeria, and autumn elsewhere. In central Mediterranean droughts are extended by a month, starting a week earlier and ending 3 weeks later. The impacts of these climatic changes on human activities such as agriculture, energy, tourism and natural ecosystems (forest fires) are also assessed. Regarding agriculture, crops whose growing cycle occurs mostly in autumn and winter show no changes or even an increase in yield. In contrast, summer crops show a remarkable decrease of yield. This different pattern is attributed to a lengthier drought period during summer and to an increased rainfall in winter and autumn. Regarding forest fire risk, an additional month of risk is expected over a great part of the basin. Energy demand levels are expected to fall significantly during a warmer winter period inland, whereas they seem to substantially increase nearly everywhere during summer. Extremely high summer temperatures in the Mediterranean, coupled with improved climate conditions in northern Europe, may lead to a gradual decrease in summer tourism in the Mediterranean, but an increase in spring and autumn.  相似文献   

11.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   

12.
A previous study of Fox [Fox, A.N. 1993. Snowline altitude and climate at present and during the Last Pleistocene Glacial Maximum in the Central Andes (5°–28°S). Ph.D. Thesis. Cornell University.] showed that for a fixed 0 °C isotherm altitude, the equilibrium-line altitude (ELA) of the Peruvian and Bolivian glaciers from 5 to 20°S can be expressed based on a log–normal expression of local mid-annual rainfall amount (P). In order to extrapolate the function to the whole Andes (10°N to 55°S) a local 0 °C isotherm altitude is introduced. Two applications of this generalised function are presented. One concerns the space evolution of mean inter-annual ELA for three decades (1961–1990) over the whole South American continent. A high-resolution data set (grid data: 10′ for latitude/longitude) of mean monthly air surface temperature and precipitation is used. Mean annual values over the 1961–1990 period were calculated. On each grid element, the mean annual 0 °C isotherm altitude is determined from an altitudinal temperature gradient and mean annual temperature (T) at ground level. The 0 °C isotherm altitude is then associated with the annual precipitation amount to compute the ELA. Using computed ELA and the digital terrain elevation model GTOPO30, we determine the extent of the glacierised area in Andean regions under modern climatic conditions. The other application concerns the ELA time evolution on Zongo Glacier (Bolivia), where inter-annual ELA variations are computed from 1995 to 1999. For both applications, the computed values of ELA are in good agreement with those derived from glacier mass balance measurements.  相似文献   

13.
Recent observations showing substantial diurnal changes in velocities of glaciers flowing into the ocean, measured at locations far inland of glacier grounding lines, add fuel to the ongoing debate concerning the ability of glaciers to transmit longitudinal-stress perturbations over large distances. Resolution of this debate has major implications for the prediction of glacier mass balance, because it determines how rapidly a glacier can respond dynamically to changes such as weakening or removal of an ice shelf. Current IPCC assessment of sea-level rise takes little account of such changes, on the assumption that dynamic responses would be too slow to have any appreciable effect on ice discharge fluxes. However, this assumption must be questioned in view of observations showing massive increases in glacier velocities following removal of parts of the Larsen Ice Shelf, Antarctica, and of others showing diurnal velocity changes apparently linked to the tides.Here, I use a simple force-perturbation model to calculate the response of glacier strain rates to tidal rise and fall, assuming associated longitudinal-force perturbations are transmitted swiftly far inland of the glacier grounding line. Results show reasonable agreement with observations from an Alaskan glacier, where the velocity changes extended only a short distance up-glacier. However, for larger Antarctic glaciers, big velocity changes extending far upstream cannot be explained by this mechanism, unless ice-shelf “back forces” change substantially with the tides.Additional insight will require continuous measurement of velocity and strain-rate profiles along flow lines of glaciers and ice shelves. An example is suggested, involving continuous GPS measurements at a series of locations along the centre line of Glaciar San Rafael, Chile, extending from near the calving front to perhaps 20 km inland. Tidal range here is about ± 0.8 m, which should be sufficient to cause a variation in ice-front velocity of ± 2 cm h− 1 about its average value of 75 cm h− 1, assuming local seawater depth of 150 m and glacier thickness of 200–400 m.  相似文献   

14.
To evaluate the consequences of possible future climate changes and to identify the main climate drivers in high latitudes, the vegetation and climate in the East Siberian Arctic during the last interglacial are reconstructed and compared with Holocene conditions. Plant macrofossils from permafrost deposits on Bol'shoy Lyakhovsky Island, New Siberian Archipelago, in the Russian Arctic revealed the existence of a shrubland dominated by Duschekia fruticosa, Betula nana and Ledum palustre and interspersed with lakes and grasslands during the last interglacial. The reconstructed vegetation differs fundamentally from the high arctic tundra that exists in this region today, but resembles an open variant of subarctic shrub tundra as occurring near the tree line about 350 km southwest of the study site. Such difference in the plant cover implies that, during the last interglacial, the mean summer temperature was considerably higher, the growing season was longer, and soils outside the range of thermokarst depressions were drier than today. Our pollen-based climatic reconstruction suggests a mean temperature of the warmest month (MTWA) range of 9–14.5 °C during the warmest interval of the last interglacial. The reconstruction from plant macrofossils, representing more local environments, reached MTWA values above 12.5 °C in contrast to today's 2.8 °C. We explain this contrast in summer temperature and soil moisture with a combination of summer insolation higher than present and climatic continentality in arctic Yakutia stronger than present as result of a considerably less inundated Laptev Shelf during the last interglacial.  相似文献   

15.
Quaternary uplift of northern England   总被引:3,自引:3,他引:0  
Upland flats, attributable to erosion, have long been recognised in the landscape of the Lake District region of NW England, at altitudes of up to ~ 800 m O.D. Extrapolation using uplift rates derived from dated Pleistocene sites (karstic caves and other features) in the adjacent Pennine uplands suggests that if this succession of flats formed close to sea-level they date from the Middle Pliocene onwards, indicating a subsequent time-averaged uplift rate of almost 0.3 mm a 1. Numerical modelling indicates that erosion of surrounding areas at a typical rate of 0.2 mm a 1 since 3.1 Ma could have caused this uplift, as well as constraining the local effective viscosity of the lower crust as ~ 4 × 1018 Pa s and the typical local Moho temperature as ~ 650 °C. It is thus feasible that most of the topography of northern England has developed since the Middle Pliocene, as a consequence of coupling between erosion and the resulting induced flow in the lower continental crust. The much faster vertical crustal motions indicated in this part of northern England, compared with SE England, are thus mainly a consequence of much greater mobility of the lower crust in the north, due to its younger thermal age and the heating effect of radioactive Palaeozoic granites. Uplift of this magnitude, which has previously gone unrecognised, may have affected post-Pliocene global climate.  相似文献   

16.
Permafrost warming in the Tien Shan Mountains, Central Asia   总被引:4,自引:0,他引:4  
The general features of alpine permafrost such as spatial distribution, temperatures, ice content, permafrost and active-layer thickness within the Tien Shan Mountains, Central Asia are described. The modern thermal state of permafrost reflects climatic processes during the twentieth century when the average rise in mean annual air temperature was 0.006–0.032 °C/yr for the different parts of the Tien Shan. Geothermal observations during the last 30 yr indicate an increase in permafrost temperatures from 0.3 °C up to 0.6 °C. At the same time, the average active-layer thickness increased by 23% in comparison to the early 1970s. The long-term records of air temperature and snow cover from the Tien Shan's high-mountain weather stations allow reconstruction of the thermal state of permafrost dynamics during the last century. The modeling estimation shows that the altitudinal lower boundary of permafrost distribution has shifted by about 150–200 m upward during the twentieth century. During the same period, the area of permafrost distribution within two river basins in the Northern Tien Shan decreased approximately by 18%. Both geothermal observations and modeling indicate more favorable conditions for permafrost occurrences and preservation in the coarse blocky material, where the ice-rich permafrost could still be stable even when the mean annual air temperatures exceeds 0 °C.  相似文献   

17.
New paleovegetation and paleoclimatic reconstructions from the Sierra Madre Occidental (SMO) in northwestern Mexico are presented. This work involves climate and biome reconstruction using Plant Functional Types (PFT) assigned to pollen taxa. We used fossil pollen data from four Holocene peat bogs located at different altitudes (1500‑2000 m) at the border region of Sonora and Chihuahua at around 28° N latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.; Ortega-Rosas, C.I., Peñalba, M.C., Guiot, J. Holocene altitudinal shifts in vegetation belts and environmental changes in the Sierra Madre Occidental, Northwestern Mexico. Submitted for publication of Palaeobotany and Palynology). The closest modern pollen data come from pollen analysis across an altitudinal transect from the Sonoran Desert towards the highlands of the temperate SMO at the same latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.). An additional modern pollen dataset of 400 sites across NW Mexico and the SW United States was compiled from different sources (Davis, O.K., 1995. Climate and vegetation pattern in surface samples from arid western U.S.A.: application to Holocene climatic reconstruction. Palynology 19, 95–119, North American Pollen Database, Latin-American Pollen Database, personal data, and different scientific papers). For the biomization method (Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from paleoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185–194), we modified the pollen-PFT and PFT-biomes assignation of Thompson and Anderson (Thompson, R.S., Anderson, K.H., 2000. Biomes of western North America at 18,000; 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography 27, 555–584) for a better representation of the modern vegetation of NW Mexico. The biome reconstruction method was validated with the modern pollen sites and applied to the fossil sites. Our results show that, during the early Holocene, a cool conifer forest extended at least down to 1700 m, while today this biome is present above 2000 m in the Chihuahua state. The Younger Dryas event was recorded in one site with cold and dry conditions. The reconstructed annual temperature for this period was 3°–6 °C colder than today, and annual precipitation was 250 mm lower than at present (900 mm/yr). The middle Holocene after 9200 cal yr BP was marked by a warming trend, reaching temperatures 2 °C warmer than today at 7000 cal yr BP, and by the installation of a warm mixed forest, the present day biome, at 1700 m elevation, while at higher elevations (1900 m) the cool conifer forest was still present. Summer precipitation was 200 mm/yr above the early Holocene values, suggesting that monsoon-like conditions strengthened since 9200 cal yr BP at this region. During the last 4000 yr, the same warm mixed forest was reconstructed below 1700 m and a conifer forest above 1700 m. A great variability of vegetation and climate patterns was recorded for the last 3000 yr particularly at high elevation sites, where warming and cooling trends would be coeval of the Medieval warm period and Little Ice Age, likely related to ENSO variability.  相似文献   

18.
The microcharcoal content (particles < 180 µm) of overlapping sedimentary sequences from two crater lake basins in central Turkey are used to reconstruct the regional fire history of the East Mediterranean oak–grass parkland zone from the Last Glacial Maximum to the present-day. These results are correlated with stable isotope and pollen data from the same cores in order to assess the changing role of climate, vegetation and human activity in landscape burning. This indicates that climatically-induced variation in biomass availability was the main factor controlling the timing of regional fire activity during the Last Glacial–Interglacial climatic transition, and again during Mid-Holocene times, with fire frequency and magnitude increasing during wetter climatic phases. Spectral analysis of the Holocene part of the record from Eski Acıgöl indicates significant cyclicity with a periodicity of ~ 1500 years that may be linked with large-scale climate forcing. Although proto-agricultural societies were established in this region as early as 10,000 years ago, it is only during the last two to three millennia that the pacing of wildfire cycles appears to have become decoupled from climate and linked instead to human-induced changes in land cover and fuel load availability.  相似文献   

19.
Today, most land surface process models have prescribed seasonal change of vegetation with regard to the exchange processes between land and the atmosphere. However, in order to consider the real interaction between vegetation and atmosphere and represent it best in a climate model, the vegetation growth process should be included. In other words, “life” should be brought into climate models. In this study, we have coupled the physical and biological components of AVIM (Atmosphere–Vegetation Interaction Model), a land surface model including plant ecophysiological processes, into the IAP/LASG L9 R15 GOALS GCM. To exhibit terrestrial vegetation information, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere, which is 7.5° longitude and 4.5° latitude. The simulated monthly mean surface air temperature and precipitation is close to the observations. The monthly mean Leaf Area Index (LAI) is consistent with the observed data. The global annual mean net primary production (NPP) simulation is also reasonable. The coupled model is stable, providing a good platform for research on two-way interaction between land and atmosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

20.
Climate change may affect the sediment generation and transportation processes and the consequent sediment flux in a river. The sensitivity of suspended sediment flux to climate change in the Longchuanjiang catchment is investigated with Artificial Neural Networks (ANNs). ANNs were calibrated and validated using sediment flux data from 1960 to 1990 during which the influence from human activities was relatively stable. The established ANN is used to predict the responses of sediment flux to 25 hypothetical climate scenarios, which were generated by adjusting the baseline temperature up to − 1, 1, 2 and 3 °C and by scaling the baseline precipitation by +/ 10% and +/ 20%. The results indicated when temperature remains unchanged, an increase in rainfall will lead to a rise in sediment flux; when rainfall level remains unchanged, an increase in temperature is likely to result in a decrease in sediment flux. Same percentage of changes in rainfall and temperature are likely to trigger higher responses in wetter months than in drier months. However, it is the combination of the change in temperature and rainfall that determines the change of sediment flux in a river. Higher sediment flux is expected to appear under wetter and warmer climate, when higher transport capacity is accompanied by higher erosion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号