首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

4.
We present the discovery of the widest known ultracool dwarf–white dwarf binary. This binary is the first spectroscopically confirmed widely separated system from our target sample. We have used the Two-Micron All-Sky Survey (2MASS) and SuperCOSMOS archives in the southern hemisphere, searching for very widely separated ultracool dwarf–white dwarf binaries, and find one common proper motion system, with a separation of 3650–5250 au at an estimated distance of 41–59 pc, making it the widest known system of this type. Spectroscopy reveals 2MASS J0030−3740 is a DA white dwarf with   T eff= 7600 ± 100 K, log( g ) = 7.79–8.09  and   M WD= 0.48–0.65 M  . We spectroscopically type the ultracool dwarf companion (2MASS J0030−3739) as M9 ± 1 and estimate a mass of  0.07–0.08 M,  T eff= 2000–2400 K  and  log( g ) = 5.30–5.35  , placing it near the mass limit for brown dwarfs. We estimate the age of the system to be >1.94 Gyr (from the white dwarf cooling age and the likely length of the main-sequence lifetime of the progenitor) and suggest that this system and other such wide binaries can be used as benchmark ultracool dwarfs.  相似文献   

5.
We present FUSE H Lyman series spectroscopy of the hot white dwarf companion to the 4th magnitude A1 III star β  Crt, which shows that it has an unusually low mass,     , and has almost certainly evolved through binary interaction. This system could be a long-sought remnant of Algol-type evolution, although radial velocity measurements appear to show that the pair are not close. Instead, micro-variations in the proper motion of β  Crt as measured by Hipparcos suggest that the period could be as high as ∼10 yr. However, a low-mass white dwarf in a system with a period ≳3 yr is difficult to explain by conventional models for binary evolution. We speculate on alternative models for the evolution of this system which involve an eccentric binary or multiple components.  相似文献   

6.
We consider the evolution of white dwarfs with compact object companions (specifically black holes with masses up to  ∼106  M  , neutron stars, and other white dwarfs). We suppose that the orbits are initially quite elliptical and then shrink and circularize under the action of gravitational radiation. During this evolution, the white dwarfs will pass through resonances when harmonics of the orbital frequency match the stellar oscillation eigenfrequencies. As a star passes through these resonances, the associated modes will be excited and can be driven to amplitudes that are so large that there is a back reaction on the orbit which, in turn, limits the growth of the modes. A formalism is presented for describing this dynamical interaction for a non-rotating star in the linear approximation when the orbit can be treated as non-relativistic. A semi-analytical expression is found for computing the resonant energy transfer as a function of stellar and orbital parameters for the regime where back reaction may be neglected. This is used to calculate the results of passage through a sequence of resonances for several hypothetical systems. It is found that the amplitude of the  ℓ= m = 2  f -mode can be driven into the non-linear regime for appropriate initial conditions. We also discuss where the no back reaction approximation is expected to fail, and the qualitative effects of back reaction.  相似文献   

7.
The ROSAT Wide Field Camera (WFC) survey of the extreme ultraviolet (EUV) has provided us with evidence for the existence of a previously unidentified sample of hot white dwarfs in unresolved, detached binary systems. These stars are invisible at optical wavelengths due to the close proximity of their much more luminous companions (spectral type K or earlier). However, for companions of spectral type ∼A5 or later the white dwarfs are easily visible at far-ultraviolet wavelengths, and can be identified in spectra taken by IUE . 16 such systems have been discovered in this way through ROSAT EUVE IUE observations, including four identified by us in Paper I. In the present paper we report the results of our continuing search during the final year of IUE operations. One new system, RE J0500−364 (DA+F6/7V), has been identified. This star appears to lie at a distance of ∼500−1000 pc, making it one of the most distant white dwarfs, if not the most distant, to be detected in the EUV surveys. The very low line-of-sight neutral hydrogen volume density to this object could place a lower limit on the length of the β CMa interstellar tunnel of diffuse gas, which stretches away from the Local Bubble in a similar direction to RE J0500−364. In this paper we also analyse a number of the stars observed where no white dwarf companion was found. Some of these objects show evidence for chromospheric and coronal activity. Finally, we present an analysis of the previously known WD+active F6V binary HD 27483 (Bo¨hm-Vitense 1993), and show that, at T  ≈ 22 000 K, the white dwarf may be contributing significantly to the observed EUV flux. If so, it is one of the coolest such stars to be detected in the EUV surveys.  相似文献   

8.
9.
We present a new optical spectroscopic study of the O-type binary HD 165052 based on high- and intermediate-resolution CCD observations. We re-investigated the spectral classification of the binary components, obtaining spectral types of O6.5 V and O7.5 V for the primary and secondary, respectively, finding that both stars display weak C  iii λ 5696 emission in their spectra. We also determined a radial-velocity orbit for HD 165052 with a period of  2.95510±0.00001 d  , and semi-amplitudes of 94.8 and  104.7±0.5 km s-1  , resulting in a mass ratio   Q =0.9  . From a comparison with previous radial-velocity determinations, we found evidence of apsidal motion in the system. Several signatures of wind–wind collision, such as phase-locked variability of the X-ray flux and the Struve–Sahade effect, are also considered. It was also found that the reddening in the region should be normal, in contrast with previous determinations.  相似文献   

10.
A new high-quality set of orbital parameters for the O-type spectroscopic binary HD 93205 has been obtained combining échelle and coudé CCD observations. The radial velocity orbits derived from the He  ii λ 4686 Å (primary component) and He  i λ 4471 Å (secondary component) absorption lines yield semi-amplitudes of 133±2 and 314±2 km s−1 for each binary component, resulting in minimum masses of 31 and 13 M ( q =0.42) . We also confirm for the binary components the spectral classification of O3 V+ O8 V previously assigned. Assuming for the O8 V component a 'normal' mass of 22–25 M we would derive for the primary O3 V a mass of 'only' 52–60 M and an inclination of about 55° for the orbital plane. We have also determined for the first time a period of apsidal motion for this system, namely 185±16 yr using all available radial velocity data sets of HD 93205 (from 1975 to 1999). Phase-locked variations of the X-ray emission of HD 93205 consisting of a rise of the observed X-ray flux near periastron passage are also discussed.  相似文献   

11.
12.
13.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA , XMM–Newton and Chandra X-ray observations spread over 10 yr; and a cumulative 27-yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with     , which is inconsistent in sign and magnitude with magnetic dipole radiation losses, or an additional quadratic term with     , which is consistent with a modest increase in the accretion torques spinning down the white dwarf. Regular monitoring, in the optical, ultraviolet and/or X-rays, is required to track the evolution of the spin period of the white dwarf in AE Aqr.  相似文献   

15.
We report on the discovery of a coherent periodicity in the B light curve of the symbiotic star BF Cyg. The signal was detected in some sections of the light curve of the star recorded in the year 2003 as double-hump periodic variations with an amplitude of ≃7 mmag. In the year 2004, the signal was also present in only a subsection of the light curve. In that year, the system was about twice as bright and the amplitude of the oscillations was about half of what it was in 2003. In 2004, the cycle structure was of a single hump, the phase of which coincided with the phase of one of the humps in the 2003 cycle. No periodic signal was detected in a third, short series of observations performed in the year 2007, when the star was 3 mag brighter than in 2003. We interpret the periodicity as the spin period of the white dwarf component of this interacting binary system. We suggest that the signal in 2003 originated in two hotspots on or near the surface of the white dwarf most likely around the two antipodes of an oblique dipole magnetic field of this star. Magnetic field lines funnelled accreted matter from the wind of the cool component to the pole areas, where the falling material created the hotspots. This process is apparently intermittent in its nature. In 2004, the activity near only one pole was enhanced enough to raise the signal above the threshold of our detection ability.  相似文献   

16.
We determine the possible masses and radii of the progenitors of white dwarfs in binaries from fits to detailed stellar evolution models and use these to reconstruct the mass-transfer phase in which the white dwarf was formed. We confirm the earlier finding that in the first phase of mass transfer in the binary evolution leading to a close pair of white dwarfs, the standard common-envelope formalism (the α-formalism) equating the energy balance in the system (implicitly assuming angular momentum conservation) does not work. An algorithm equating the angular momentum balance (implicitly assuming energy conservation) can explain the observations. This conclusion is now based on 10 observed systems rather than three. With the latter algorithm (the γ-algorithm) the separation does not change much for approximately equal-mass binaries. Assuming constant efficiency in the standard α-formalism and a constant value of γ, we investigate the effect of both methods on the change in separation in general and conclude that when there is observational evidence for strong shrinkage of the orbit, the γ-algorithm also leads to this. We then extend our analysis to all close binaries with at least one white dwarf component and reconstruct the mass-transfer phases that lead to these binaries. In this way we find all possible values of the efficiency of the standard α-formalism and of γ that can explain the observed binaries for different progenitor and companion masses. We find that all observations can be explained with a single value of γ, making the γ-algorithm a useful tool to predict the outcome of common-envelope evolution. We discuss the consequences of our findings for different binary populations in the Galaxy, including massive binaries, for which the reconstruction method cannot be used.  相似文献   

17.
We present spectroscopy and photometry of GD 448, a detached white dwarf – M dwarf binary with a period of 2.47 h. We find that the Na  I  8200-Å feature is composed of narrow emission lines, owing to irradiation of the M dwarf by the white dwarf, within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational redshift measurement from spectra of the Hα line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 ± 0.01 and 0.096 ± 0.004 M, respectively). We use a simple model of the Ca II emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 ± 0.020 R. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius, and is less than half the size of its Roche lobe. The thermal time-scale of the M dwarf is much longer than the cooling age of the white dwarf, so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the Hα emission from the M dwarf remains to be explained, but the strength of the line may be due to X-ray heating of the M dwarf owing to accretion on to the white dwarf from the M dwarf wind.  相似文献   

18.
GJ 569Bab is the first brown dwarf binary for which the mass of each component has been derived by solving the astrometric and spectroscopic orbit of the pair, i.e., independently of any theoretical assumption. This allows us to test the predictions of the various evolutionary models available in the literature. Particularly interesting are the predictions of lithium depletion for the mass (0.08–0.05M) and likely age (300–800 Myr) of the substellar components. High‐resolution optical spectra of GJ 569B (the pair is not resolved) obtained with HIRES at the Keck telescope show that there has been significant lithium depletion in both components. We will compare these results to state‐of‐the‐art theoretical calculations. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Following the proposal by Damineli that the central object of Eta Carinae may be an early-type binary, we perform numerical simulations of the X-ray emission from colliding stellar winds. A synthetic light curve has been generated which qualitatively agrees with the recent X-ray variability, and provides further support for the binary model. In particular, the model predicts a rise in the observed X-ray emission towards periastron, followed by a sharp drop and subsequent recovery. This is indeed what is seen in the RXTE light curve, although some problems concerning the X-ray spectrum at periastron still need to be explained. The simulations suggest that the width of the periastron dip will provide strong constraints on the binary and stellar wind properties of the components of Eta Car.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号