首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王小美  逄云峰  杜培军  谭琨  李光丽 《测绘科学》2011,36(2):139-141,177
为了验证噪声对支持向量机分类器性能的影响,对"SVM可以有效用于含噪声和不确定性数据"这一观点进行定量分析评价,采用国产OMISII传感器获得的高光谱遥感数据进行了试验,为了更好地比较SVM分类器的抗噪性,先对原始数据进行支持向量机分类,然后在高光谱遥感影像中人为添加不同比例的椒盐噪声和条带噪声,然后进行支持向量机分类...  相似文献   

2.
谭琨  杜培军  王小美 《测绘科学》2011,36(1):55-57,31
本文为验证SVM对高维特征的适应性和可靠性,针对不同特征提取方法与特征组合,以国产OMISⅡ传感器获得的北京昌平地区高光谱遥感据为例,对SVM分类器中特征维数对分类准确率的影响进行了试验,通过对主成分分析、最小噪声分离算法、相关系数分组后特征提取、导数光谱等的分析,表明SVM分类器的分类精度随着特征维数波动,其中主成分分析降维后提取的特征具有用于分类能够获得最高的准确率。通过与最大似然法和光谱角制图分类算法的比较,说明在同样的特征输入情况下SVM分类算法分类的准确率高于最大似然法和光谱角制图分类器。  相似文献   

3.
组合核支持向量回归提取高光谱影像不透水面   总被引:1,自引:0,他引:1  
刘帅  李琦 《遥感学报》2016,20(3):420-430
由于城市地表组成的复杂性,基于单核函数的支持向量回归模型很难满足精度。本文结合空间-光谱组合核函数和支持向量回归,提出了一种提取高光谱影像不透水面丰度的改进算法。首先从高光谱遥感图像上提取波谱特征和多通道灰度共生矩阵空间纹理特征,选取研究区10%像元特征数据作为训练数据,以线性加权求和核为多核组合方式,建立结合光谱信息和空间信息的组合核支持向量回归模型。然后,用生成的回归模型预测未知像元不透水面丰度值。最后,对实验结果进行评价。在模拟数据试验中,本文算法比单核回归均方根误差平均降低1.4%,决定系数比单核回归平均提高0.6%。在Hyperion数据两组试验中,该算法比单核回归均方根误差平均降低1.8%,决定系数比单核回归平均提高11.7%。模拟和真实两种高光谱数据实验中,本文算法均得到了空间形态上更准确的不透水面结果,单核回归结果存在失真现象。研究结果表明:本文算法能够有效提取城市不透水面丰度,与单核方法相比有较明显的精度提升。  相似文献   

4.
林超  杨敏华 《测绘工程》2011,20(3):46-49
在支持向量机多类识别基础上探讨以球结构替代传统超平面支持向量机对QuickBird影像进行分类的可行性,对重叠区域的数据分类采用新规则,提高球结构支持向量机算法的泛化性能,并将分类结果与最小距离法、最大似然法分类结果进行比较,实验结果表明该算法有效可行,降低了二次规划的复杂度,缩短了样本训练时间.  相似文献   

5.
陈伟  余旭初  王鹤 《测绘科学》2010,35(3):156-158
高光谱影像目标探测可视为一个分类问题,本文通过揭示支持向量回归(SVR)与支持向量分类(SVC)之间的关系,证明了SVR用于分类的可行性,并以此为根据提出了一种基于SVR的目标探测算法,该算法利用虚拟维数得到端元个数的估计,结合端元选择和线性混合模型生成训练样本替代从影像中选择的训练样本,因而减少了对影像先验知识的依赖。采用模拟数据和由AVIRIS获得的高光谱影像对本文算法进行了检验,结果令人满意。  相似文献   

6.
Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover types in west Texas. Spectral measurements were collected with a ground-based hyperspectral spectroradiometer (spectral range 350–2500 nm) in December 2008 and April 2009. Spectral data consisting of 1698 spectral bands (400–1349, 1441–1789, 1991–2359 nm) were subjected to a support vector machine classification to differentiate saltcedar from other vegetative and non-vegetative classes. For both dates, a linear kernel model with a C value (error penalty) of 100 was found optimum for separating saltcedar from the other classes. It identified saltcedar with accuracies ranging from 95% to 100%. Findings support further exploration of hyperspectral remote sensing technology and SVM classifiers for differentiating saltcedar from other cover types.  相似文献   

7.
遗传算法优化支持向量机矿产预测方法   总被引:1,自引:0,他引:1  
季斌  周涛发  袁峰 《测绘科学》2015,(10):106-109
针对矿产预测中已知矿点的样本数目较少的问题,该文提出了一种基于遗传算法优化的支持向量机矿产预测方法。采用遗传算法优化支持向量机的惩罚因子和径向基核函数参数,避免了参数选择不当对支持向量机预测结果的影响,从而提高矿产预测的精度。以空间建模工具ArcSDM中的卡林型金矿床数据为例进行实验。结果表明,支持向量机模型的预测准确率为89.3%,查准率为70.2%;而证据权方法的预测准确率为79.4%,查准率为50%,均小于支持向量机预测结果,说明遗传算法优化的支持向量机是一种有效的矿产预测方法。  相似文献   

8.
关联向量机在高光谱影像分类中的应用   总被引:1,自引:0,他引:1  
董超  赵慧洁 《遥感学报》2010,14(6):1279-1284
将关联向量机应用于高光谱影像分类, 实现高维空间中训练样本不足时分类器的精确建模。从稀疏贝叶 斯理论出发, 分析关联向量机原理, 探讨一对多、一对一和两种直接的多分类方法。实验环节比较了各种多分类方 法, 并从精度、稀疏性两方面将关联向量机与支持向量机等经典算法比较。实验结果表明, 两种直接的多分类方法 内存占用大、效率低; 一对多精度最高, 但效率较低; 一对一计算效率最高, 精度与一对多近似。关联向量机精度 不如支持向量机, 但解更稀疏, 测试样本较多时实时性好, 适合处理大场景高光谱影像的分类问题。  相似文献   

9.
Several remote sensing studies have adopted the Support Vector Machine (SVM) method for image classification. Although the original formulation of the SVM method does not incorporate contextual information, there are different proposals to incorporate this type of information into it. Usually, these proposals modify the SVM training phase or make an integration of SVM classifications using stochastic models. This study presents a new perspective on the development of contextual SVMs. The main concept of this proposed method is to use the contextual information to displace the separation hyperplane, initially defined by the traditional SVM. This displaced hyperplane could cause a change of the class initially assigned to the pixel. To evaluate the classification effectiveness of the proposed method a case study is presented comparing the results with the standard SVM and the SVM post-processed by the mode (majority) filter. An ALOS/PALSAR image, PLR mode, acquired over an Amazon area was used in the experiment. Considering the inner area of test sites, the accuracy results obtained by the proposed method is better than SVM and similar to SVM post-processed by the mode filter. The proposed method, however, produces better results than mode post-processed SVM when considering the classification near the edges between regions. One drawback of the method is the computational cost of the proposed method is significantly greater than the compared methods.  相似文献   

10.
In many change detection applications, the focus is often on one specific change class. The one-class support vector machine (OCSVM)-based change detection method has been proved effective for dealing with such problems, which only requires samples from the change class of interest as the training data. However, this classical method only uses a single kernel which limits its separating capabilities in real-world applications. To further improve the efficacy of the OCSVM-based change detection method, this paper proposes an improved change detection method that uses a data-oriented composite-kernel-based one-class support vector machine. It utilizes the feature information entropy of the training data to determine the kernel weights in constructing a composite kernel. Experimental results on two data-sets demonstrate that the proposed method outperforms the existing classical OCSVM-based change detection method and the traditional composite-kernel-based method with relatively few false alarm errors, and shows good potential for further applications.  相似文献   

11.
近年来红树林群落中物种结构简单、功能退化等环境问题日趋严重,为了及时准确掌握红树林群落的物种空间格局与分布,本文首先基于深圳福田红树林自然保护区无人机高光谱影像,利用归一化差值植被指数和归一化潮间红树林指数提取植被区域;然后在植被区域根据最佳指数法选取信息量大、波段相关性小的波段组合,分别采用基于像素支持向量机分类方法和面向对象影像分类方法对红树林物种进行分类。试验结果表明,基于像素支持向量机分类方法的总体精度为81.03%;利用面向对象影像分类方法的总体精度为85.58%。面向对象影像分类方法能有效去除椒盐噪声,充分利用对象光谱、形状及纹理信息,提供更准确的红树林分布信息。  相似文献   

12.
Information about the Earth's surface is required in many wide-scale applications. Land cover/use classification using remotely sensed images is one of the most common applications in remote sensing, and many algorithms have been developed and applied for this purpose in the literature. Support vector machines (SVMs) are a group of supervised classification algorithms that have been recently used in the remote sensing field. The classification accuracy produced by SVMs may show variation depending on the choice of the kernel function and its parameters. In this study, SVMs were used for land cover classification of Gebze district of Turkey using Landsat ETM+ and Terra ASTER images. Polynomial and radial basis kernel functions with their estimated optimum parameters were applied for the classification of the data sets and the results were analyzed thoroughly. Results showed that SVMs, especially with the use of radial basis function kernel, outperform the maximum likelihood classifier in terms of overall and individual class accuracies. Some important findings were also obtained concerning the changes in land use/cover in the study area. This study verifies the effectiveness and robustness of SVMs in the classification of remotely sensed images.  相似文献   

13.
针对基于高斯径向基核函数的OCSVM等异常检测算法,对地物光谱变异极为敏感,导致算法异常检测性能不稳定的问题,根据光谱角度余弦测度对光谱形状相似性的描述不受地物光谱辐射强度变异影响的特性,将具有非正定核特性的光谱角度余弦核测度引入非正定SVM算法中,提出一种基于非正定OCSVM的高光谱影像地物异常检测算法。利用四组模拟数据进行目标异常检测实验,结果表明,该算法能够有效检测出高光谱影像数据中的目标地物,检测精度提升明显。  相似文献   

14.
优化子空间SVM集成的高光谱图像分类   总被引:2,自引:0,他引:2  
随机子空间集成是很有前景的高光谱图像分类技术,子空间的多样性和单个子空间的性能与集成后的分类精度密切相关。传统方法在增强单个子空间性能的同时,往往会获得大量最优但相似的子空间,因而减小它们之间的多样性,限制集成系统的分类精度。为此,提出优化子空间SVM集成的高光谱图像分类方法。该方法采用支持向量机(SVM)作为基分类器,并通过SVM之间的模式差别对随机子空间进行k-means聚类,最后选择每类中J-M距离最大的子空间进行集成,从而实现高光谱图像分类。实验结果显示,优化子空间SVM集成的高光谱图像分类方法能够有效解决小样本情况下的Hughes效应问题;总体精度达到75%–80%,Kappa系数达到0.61–0.74;比随机子空间集成方法和随机森林方法分类精度更高、更稳定,适合高光谱图像分类。  相似文献   

15.
针对高光谱影像分类问题,提出了一种显著性特征提取方法。首先,利用超像素分割算法将高光谱影像3个相邻波段分割为若干个小区域。然后,基于分割得到的小区域计算反映不同区域的显著性特征。最后,沿着光谱方向采用大小为3、步长为1的滑窗法获得所有波段的显著性特征。进一步将提取的显著性特征与光谱特征进行结合,并将结合后的特征输入到支持向量机中进行分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验。试验结果表明,与传统的空间特征提取方法和基于卷积神经网络的高光谱影像分类方法相比,提取的显著性特征能够获得更高的高光谱影像分类精度,且结合光谱特征能够进一步提高分类精度。  相似文献   

16.
吕杰 《测绘科学》2015,(9):88-91
针对现有研究在准确估算叶绿素含量方面的不足,该文运用粒子群优化算法和支持向量机构建叶片尺度作物叶绿素含量高光谱反演模型:利用PROSPECT模型模拟作物光谱,并运用所对应的叶绿素含量建立训练数据集,然后采用粒子群优化算法支持向量机学习训练数据集,最后建立实测叶片叶绿素含量估测模型。研究结果表明,粒子群优化算法和支持向量机构建的反演模型能准确预测作物的叶绿素含量,能够解决小样本作物采样点情况下叶绿素含量反演问题,可以作为作物叶绿素含量估测的参考方法。  相似文献   

17.
谭熊  余旭初  秦志远  张鹏强  魏祥坡 《测绘学报》2015,44(11):1227-1234
信息向量机是一种基于贝叶斯理论的稀疏高斯过程方法,其模型训练速度快、内存耗费小、稀疏性强,具有良好的预测性能。本文从高斯过程回归模型出发,提出了一种基于信息向量机的高光谱影像分类方法,针对高斯过程分类中的非高斯噪声模型,采用假定概率滤波算法将分类问题转化为回归问题,通过最大化边缘似然函数进行模型训练,选择活动子集中的信息向量数量达到了稀疏的目的。通过ROSIS影像试验,表明了基于信息向量机的高光谱影像分类方法的优势。  相似文献   

18.
大坝变形预测的支持向量机模型   总被引:1,自引:0,他引:1  
针对大坝变形具有强非线性的特点以及在采用传统神经网络模型进行预测时存在局部极小、过学习等问题,提出一种新的大坝变形预测方法——支持向量机方法。该方法基于统计学习理论,采用结构风险最小化原则,保证了模型具有很强的泛化性能,并通过求解一个二次规划问题确保模型具有全局最优。以东江大坝变形预测为实例,说明了该方法的可行性和有效性。  相似文献   

19.
基于最小二乘支持向量机回归综合预测建筑物沉降   总被引:1,自引:0,他引:1  
针对在工程实践中,应用单一方法预测建筑物沉降存在着局限性,提出了基于最小二乘支持向量机回归综合单一方法预测沉降量。该方法能综合单一方法的特点,增强了模型的普适性,从而提高了预测精度和预报期次。文中讨论了如何实现和运用该方法,最后通过实例验证了其有效性。  相似文献   

20.
支持向量机分类方法存在惩罚系数需要交叉验证获取、训练时间较长、支持向量个数随着训练样本数量的变化而变化,以及稳定性和稀疏性较差等问题。针对这些问题,提出了一种基于输入向量机的高光谱影像分类算法。该算法在核逻辑回归模型的基础上,采用前向贪心算法选择训练样本中的输入向量来进行模型的训练,达到稀疏的目的,提高影像的分类精度和分类效率。通过PHI和OMIS两组高光谱影像分类实验,结果表明基于输入向量机分类算法具有稳定性好、稀疏性强的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号