首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presumed deposits of the Storegga tsunami have been recognized in a coastal lake situated 4 m a.s.l. on the island of Suðuroy, the Faroe Islands. The stratigraphy in the lake reveals a major erosion and redepositional event. The deposited material ranges from sand and sandy gyttja, with marine shell fragments and foraminifera, to gyttja with rip-up clasts, wood fragments and thin sand layers. Diatom analysis indicates that the deposit contains 5-8% polyhalobous (full marine) species, decreasing to 1-2% in the undisturbed lacustrine gyttja above. The tsunami event was dated to some time between 7300 and 6400 14 C yr BP. Lithostratigraphic profiles in the lake suggest that at least two large waves inundated the basin. The first and largest wave eroded most or all of the sediments previously deposited in the basin. The next wave caused minor erosion of the redeposited material. The waves deposited two generations of sand overlain by organic conglomerates, after which followed a unit of suspension material and normal lacustrine gyttja.  相似文献   

2.
A detailed assessment of the impact of a far-field tsunami on the Australian coastline was carried out in the Steep Point region of Western Australia following the July 17 2006 Java tsunami. Tsunami inundation and run-up were mapped on the basis of eyewitness accounts, debris lines, vegetation damage and the occurrence of recently deposited fish, starfish, corals and sea urchins well above high-tide mark. A topographic survey using kinematic GPS with accuracies of 0.02 m in the horizontal and 0.04 m in the vertical recorded flow depths of between 1 and 2 m, inundation of up to 200 m inland, and a maximum recorded run-up of 7.9 m AHD (Australian Height Datum). The tsunami impacted the sparsely populated Steep Point coastline close to low tide. It caused widespread erosion in the littoral zone, extensive vegetation damage and destroyed several campsites. Eyewitnesses reported three waves in the tsunami wave train, the second being the largest. A sand sheet, up to 14 cm thick and tapering landwards over 200 m, was deposited over coastal dunes. The deposits are predominantly composed of moderately well-sorted, medium-grained carbonate sand with some gravel and organic debris. A basal unconformity defines the boundary between tsunami sediments and underlying aeolian dune sand. Evidence for up to three individual waves is preserved as normally graded sequences mantled by layers of dark grey, organic-rich fine silty sand. Given the strong wind regimes in the area and the similarity of the underlying dune deposits to the tsunami sediments, it is likely that seasonal erosion will remove all traces of these sediment sheets within years to decades.  相似文献   

3.
Sedimentary successions in small coastal lakes situated from 0 to 11 m above the 7000 year BP shoreline along the western coast of Norway, contain a distinctive deposit, very different from the sediments above and below. The deposit is interpreted to be the result of a tsunami inundating the coastal lakes. An erosional unconformity underlies the tsunami facies and is traced throughout the basins, with most erosion found at the seaward portion of the lakes. The lowermost tsunami facies is a graded or massive sand that locally contains marine fossils. The sand thins and decreases in grain size in a landward direction. Above follows coarse organic detritus with rip-up clasts, here termed ‘organic conglomerate’, and finer organic detritus. The tsunami unit generally fines and thins upwards. The higher basins (6–11 m above the 7000 year shoreline) show one sand bed, whereas basins closer to the sea level 7000 years ago, may show several sand beds separated by organic detritus. These alternations in the lower basins may reflect repeated waves of sea water entering the lakes. In basins that were some few metres below sea level at 7000 years BP, the tsunami deposit is more minerogenic and commonly present as graded sand beds, but also in some of these shallow marine basins organic-rich facies occur between the sand beds. The total thickness of the tsunami deposit is 20–100 cm in most studied sites. An erosional and depositional model of the tsunami facies is developed.  相似文献   

4.
The tsunami sediments deposited after the December 2004 tsunami were sampled immediately in the coastal environment of Tamil Nadu State on the southeast coast of India. Fifty-four sediment samples were collected and 14 representative samples were selected to identify the level of metal contamination in tsunami sediments. The results indicate that the sediments are mainly of fine to medium-grained sand and contain significantly high contents of dissolved salts in sediments (Na+, K+, Ca+2, Mg+2, Cl) in water-soluble fraction due to seawater deposition and evaporation. Correlation of acid leachable trace metals (Cr, Cu, Ni, Co, Pb, Zn) indicate that Fe-Mn oxyhydroxides might play an important role in controlling their association between them. Enrichment of trace metals is observed in all the locations with reference to the background samples. High values of trace metals in the southern part of the study area are due to the large-scale industries along the coast, and they are probably anthropogenic in nature and of marine origin, which could cause serious environmental problems.  相似文献   

5.
Over the last few decades, a lot of attention has been concentrated on the consequences of marine impacts, especially those caused by the tsunami wave train. Internal solitary waves are similar to the surface waves that commonly occur in the waters of the ocean or large lakes and can have significant effects on oceanic mixing, climate change, the movement of submerged plankton, and the weathering of geological structures. This motion can be severe enough to create natural hazards such as submarine tsunamis in the ocean. These could also even occur in large lakes. The present work aims to contribute to this knowledge base by studying internal wave propagation on a shallow continental shelf following a particular marine impact. A series of laboratory experiments were conducted in order to clarify the movement of an interfacial solitary wave across a uniform slope and a horizontal plateau forming a slope-shelf topography. The results obtained from test runs indicate that the wave maintains its strength, having a direct impact on the natural ecology of the local oceanic environment. Comparison with different seabed topographies is also presented to demonstrate the propagation of an internal wave over a trapezoidal barrier. A better fitting and more appropriate model is employed to examine the relationship between the physical parameters for better predicting the evolution of an internal solitary wave as it moves over a trapezoidal obstacle on a horizontal plateau.  相似文献   

6.
The December 26, 2004 Indian Ocean tsunami was one of the largest in human history, devastating the coastal wetlands of surrounding countries. This study present the chemical analyses of tsunamigenic and pre-tsunami sediments from Hikkaduwa and Hambantota lagoons in southern Sri Lanka, to assess their geochemical composition, their source, and subsequent environmental impacts. Principal component analysis of the tsunami sediments shows that 42% of the total variance is accounted for calcium oxide and Sr. That is, the tsunami deposits are rich in biogenic phases derived from shallow marine sediments. High organic matter contents of the tsunami sediments of up to 80 wt% also support this interpretation. The association of chlorine (<9.4 wt%), brome (<170?mg/kg), arsenic (<17?mg/kg), iron (III) oxide (<12.9 wt%) and sulfur (<7.6 wt%) accounts for 33% of the variance, reflecting higher salinity. This further suggests that the sediments were mainly derived from a marine environment, rather than from non-marine sands and/or soils. Immobile element contents and relations (thorium, scandium and zirconium) suggest that the tsunami sediment source was mostly felsic in composition, with some mafic component, and mixed with predominantly shallow marine shelf or slope sediments. Additional compositional variations in the tsunami sediments in both lagoons may be associated with variations of wave strength along the coast and by the morphology of the continental shelf. Lower elemental abundances in Hambantota lagoon sediments compared to Hikkaduwa equivalents may thus reflect a greater non-marine component in the former, and greater shelf sediment component in the latter.  相似文献   

7.
从海啸波作用下岸滩演变、床沙组成变化、建筑物周围淘刷和数值模拟研究4个方面,总结分析了国内外的研究现状和最新进展,指出可控环境下的实验和数值模拟研究相对较少、床沙组成变化缺乏关注、建筑物周围局部冲刷机理认识不足、缺少多尺度数值模拟计算等是当前研究存在的主要不足。在特大型波浪水槽内开展实验研究、发展多尺度混合数学模型、完善海啸波作用下的泥沙输移计算理论等是未来研究取得突破的关键方向。  相似文献   

8.
Geological Indicators of Large Tsunami in Australia   总被引:1,自引:0,他引:1  
Bryant  E. A.  Nott  J. 《Natural Hazards》2001,24(3):231-249
Tsunami waves can produce four general categories of depositional and erosional signatures that differentiate them from storm waves. Combinations of items from these categories uniquely define the impact of palaeo-tsunami on the coastal landscape. The largest palaeo-tsunami waves in Australia swept sediment across the continental shelf and obtained flow depths of 15–20 m at the coastline with velocities in excess of 10 m -1. In New South Wales, along the cliffs of Jervis Bay, waves reachedelevations of more than 80 m above sea-level with evidence of flow depths in excess of 10 m. These waves swept 10 km inland over the Shoalhaven delta. In northern Queensland, boulders more than 6 m in diameter and weighing 286 tonnes were tossed alongshore above cyclone storm wave limits inside the Great Barrier Reef. In Western Australia waves overrode and breached 60 m high hills up to 5 km inland. Shell debris and cobbles can be found within deposits mapped as dunes, 30 km inland. The array of signatures provide directional information about the origin of the tsunami and, when combined with radiocarbon dating, indicate thatat least one and maybe two catastrophic events have occurred during the last 1000 years along these three coasts. Only the West Australian coast hashistorically been affected by notable tsunami with maximum run-up elevations of 4–6 m. Palaeo-tsunami have been an order of magnitude greater than this. These palaeo-tsunami are produced most likely by large submarine slides on the continental slope or the impactof meteorites with the adjacent ocean.  相似文献   

9.
Many coastal lakes were inundated by both the Storegga tsunami (7000 14C yr BP) and the mid-Holocene sea-level rise (the Tapes transgression) in western Norway. The tsunami eroded lake bottoms and deposited graded and/or massive beds of sand, rip-up clasts, and coarse plant material. By contrast, when the rising sea entered the lakes, it deposited only gyttja, silt and fine sand, without causing much erosion of the underlying lake sediments. Storegga tsunami deposits in some coastal lakes were interpreted previously as ordinary marine sediments from the Tapes transgression. Our reinterpretation of these deposits shows that the transgression maximum phase was reached after 6500 yr BP, more than 1000 yr later than previously inferred for the coast of Sunnmøre. The new data cannot be combined in a shoreline diagram without showing the 6000 yr BP and 7000 yr BP shorelines as slightly warped. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The results of a study of the contribution of microbial metabolic products to total dissolved organic carbon (DOC) levels in coastal sediments are presented. The data indicate that acidic volatile compounds make up a substantial fraction of pore water DOC's in both oxic and anoxic pore waters of coastal marine sediments. Formic, acetic and butyric acids are the principal volatile species identified at levels exceeding 10 μM. Acid concentrations are up to five times higher in anoxic pore waters than in oxic waters. Volatile organic acids show promise as indicators of diagenetic processes in marine sediments and of the ecological succession of microorganisms, in particular.  相似文献   

11.
Onshore tsunami deposits may consist of inflow and backflow deposits. Grain sizes can range from clay to boulders of several metres in diameter. Grain‐size distributions reflect the mode of deposition and may be used to explore the hydrodynamic conditions of transport. The absence of unique sedimentary features identifying tsunami deposits makes it difficult in some cases to distinguish inflow from backflow deposits. On Isla Mocha off central Chile, the 27 February 2010 tsunami left behind inflow and backflow deposits of highly variable character. Tsunami inflow entrained sands, gravels and boulders in the upper shoreface, beach, and along coastal terraces. Boulders of up to 12 t were transported up to 300 m inland and 13 m above sea‐level. Thin veneers of coarse sand were found up to the maximum runup at 600 m inland and 19 m above sea‐level. Backflow re‐mobilized most of the sands and gravels deposited during inflow. The orientation of erosional structures indicates that significant volumes of sediment were entrained also during backflow. A major feature of the backflow deposits are widespread prograding fans of coarse sediment developed downcurrent of terrace steps. Fan sediments are mostly structureless but include cross‐bedding, imbrication and ripples, indicating deposition from bedload traction currents. The sediments are poorly sorted, grain sizes range between medium to coarse sand to gravel and pebbles. An assessment of the backflow transport conditions of this mixed material suggests that bedload transport at Rouse numbers >2·5 was achieved by supercritical flows, whereas deposition occurred when currents had decelerated sufficiently on the low‐gradient lower coastal plain. The sedimentary record of the February 2010 tsunami at Isla Mocha consists of backflow deposits to more than 90%. Due to the lack of sedimentary structures, many previous studies of modern tsunami sediments found that most of the detritus was deposited during inflow. This study demonstrates that an uncritical use of this assumption may lead to erroneous interpretations of palaeotsunami magnitudes and sedimentary processes if unknowingly applied to backflow deposits.  相似文献   

12.
海相优质烃源岩发育的主要影响因素及沉积环境   总被引:7,自引:1,他引:6  
对海洋生物、现代海洋沉积和古代海相地层中有机质含量分布特征和实验室模拟实验的结果表明,水体中高生物生产率是海相环境形成富有机质沉积的关键因素;沉积和早期成岩作用期间水体的相对还原环境是有机质富集保存的有利条件;海底深部流体的活动是造成富有机质沉积的不可忽视的因素;沉积速率是影响海相沉积有机质富集的主要因素。现有研究表明,在海相盆地中最有利形成优质烃源岩的沉积环境主要有欠补偿浅水—深水盆地、台缘斜坡、半闭塞—闭塞欠补偿海湾和蒸发潟湖。  相似文献   

13.
Study on contamination of tsunami sediments deposited on 26 December 2004 conducted shortly after the tsunami in coastal zone of Thailand revealed elevated contents of salts in water-soluble and some heavy metals and arsenic in bioavailable fractions (Szczuciński et al. in Env Geol 49:321–331, 2005). Few months later rainy season started and effected in total rainfall of over 3,300 mm. This paper presents results of survey repeated 1 year after the tsunami. To assess the effects of rainy season on mobilization of previously determined potential contaminants, the same locations were sampled again and analysed with the same methods. The tsunami deposit layer was well preserved but in many locations the sediments were coarser than just after tsunami due to washing out of finer fractions. The water-soluble salts contents were strongly reduced after the rainy season. However, the concentrations of acid leachable heavy metals and metalloids were still elevated in comparison to reference sample from an area not impacted by tsunami. It is possible that the metals and metalloids are successively moved to more bioavailable fraction from forms which were more resistant to mobilization.  相似文献   

14.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

15.
16.
Tsunami sediments deposited in a coastal zone of Thailand by the 26 December 2004 tsunami wave were sampled within 50 days after the event. All surface and ground waters in tsunami- inundated zone revealed significant salinity at that time. The tsunami sediments, composed mainly of fine to medium sand, contain significantly elevated contents of salts (Na+, K+, Ca+2, Mg+2, Cl and SO 4 −2 ) in water-soluble fraction, and of Cd, Cu, Zn, Pb in the bioavailable fraction and As in the exchangeable fraction in relation to the reference sample. The origin of contaminants is marine, as well as litho- and anthropogenic. The salts and Pb, Zn and Cu reveal high correlation to each other and to the mean grain size (pore size and porosity). Serious environmental hazard exists in that region because, due to gentle morphology, there is a risk of migration of the contaminants into ground waters and food chain.  相似文献   

17.
海洋环境中的厌氧铵氧化过程作为实现固定态氮从海洋生态系统中移除的一个新途径,广泛地存在于各种海洋环境中,包括永久性缺氧水体、沉积物、海冰甚至海底热液,是海洋氮循环过程中一个非常重要的环节。开展海洋环境中厌氧铵氧化过程的研究可以更好地量化海洋氮循环过程中的收支,而这一收支在很大程度上影响着全球的气候变化。介绍了海洋环境中厌氧铵氧化过程研究历史,并分别讨论了在大洋缺氧水体和沉积物中厌氧铵氧化速率的分布情况,同时还总结了海洋环境因子如温度、氧气、硫化氢、NO3-/NO2-、NH4+以及有机物等对厌氧铵氧化的影响。最后探讨了该领域研究中所存在的问题并指出了亟待开展的工作:特定大洋缺氧水体中厌氧铵氧化与反硝化的争议以及近岸缺氧水体中厌氧铵氧化的研究;陆架及深海大洋沉积物中厌氧铵氧化的深入研究;对于全球海洋氮循环收支的重新评估。  相似文献   

18.
The Sumatra–Andaman Tsunami left distinctive sedimentological and geomorphological signatures in the area of Khao Lak. Fine-grained sediments, predominantly layers of cohesive, carbonate-rich, fine-sandy silt with thicknesses of 1–10 cm, erosionally overlying pre-tsunami sandy soils and sediments, represent the most common tsunami deposits in the study area. Petrographically, they differ significantly from other coastal sediments and affiliated soils. Due to their grain size and corresponding clay mineral content, muddy shelf sediments (sub-wave base) are indicated as a main source. The present results suggest that indications of shelf influence, although varying regionally, might contribute to the identification of fine-grained tsunami sediments and their differentiation from storm sediments. However, the observed differences of tsunami sediments to soils and other coastal sediments, especially with respect to carbonate mineralogy, might disappear in short geological time under conditions of intensive weathering and bioturbation. At Cape Pakarang, hundreds of boulders with up to 24 tons were deposited on the foreshore and upper shoreface. Applying Nott’s (Earth Planet Sci Lett 210:269–276, 2003) formulas, minimum flow velocities of 3.9 m/s are required to transport the largest boulders. The devastating tsunami effect of both, onshore flow and backflow, is documented by damaged human constructions. Geomorphological effects include intensive widening of estuary mouths and the development of erosional channels. Now, estuary mouths are reduced, and erosional channels cut off from the sea due to the formation of a post-tsunami beach ridge.  相似文献   

19.
Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.  相似文献   

20.
In all, 53 elements were analyzed in 1406 coastal sea sediment samples collected from an area off Hokkaido and the Tohoku region of Japan during a nationwide marine geochemical mapping project. The spatial distribution patterns of the elemental concentrations in coastal seas along with the existing geochemical maps in terrestrial areas were used to define natural geochemical background variation and mass transport processes. The terrestrial area is covered by mafic volcanic rocks and accretionary complexes associated with ophiolite, which has small amounts of felsic volcanic rocks and granite. The spatial distribution patterns of elements enriched in mafic lithologies such as Fe (Total Fe2O3) and Sc in marine environments are influenced by adjoining terrestrial materials. The spatial distribution patterns of Cr and Ni concentrations, which are highly abundant in ultramafic rocks on land, are used to evaluate the mass transport from land to the sea and the dispersive processes caused by oceanic currents. The scale of mass transport by oceanic currents occurs up to a distance of 100–200 km from the coast along the coastal areas. The regional differences of elements rich in felsic lithologies such as K (K2O), Nb and La in marine sediments are determined mainly by the relative proportion of minerals and lithic fragments enriching felsic materials to those associated with mafic materials. The spatial distribution of elemental concentration is not always continuous between the land areas and coastal sea areas. That difference is interpreted as resulting from (1) transportation of marine sediments by oceanic currents and storm waves, (2) contribution of volcanic materials such as tephra, (3) occurrence of shell fragments and foraminifera tests and (4) distribution of relict sediments of the last glacial age and early transgression age. Contamination with Cu, Zn, Cd, As, Mo, Sn, Sb, Hg, Pb and Bi was not observed in marine environments because the study area has little anthropogenic activity. Terrestrial materials are the dominant source for these metals. The Mo, Cd, Sn, Sb, Hg, Pb and Bi are abundant in silty and clayey sediments locally because of early diagenetic processes, authigenic precipitation and organic substances associated with these elements. The spatial distribution of As concentration shows exceptions: it is concentrated in some coarse and fine sands on the shelf. The enrichment is explained by adsorption of As, sourced from a coal field, to Fe hydroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号