首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the unprecedented observational capabilities deployed duringthe Cooperative Atmosphere-Surface Exchange Study-99 (CASES-99),we found three distinct turbulence events on the night of 18October 1999, each of which was associated with differentphenomena: a density current, solitary waves, and downwardpropagating waves from a low-level jet. In this study, we focus onthe first event, the density current and its associatedintermittent turbulence. As the cold density current propagatedthrough the CASES-99 site, eddy motions in the upper part of thedensity current led to periodic overturning of the stratifiedflow, local thermal instability and a downward diffusion ofturbulent mixing. Propagation of the density current induced asecondary circulation. The descending motion following the head ofthe density current resulted in strong stratification, a sharpreduction in the turbulence, and a sudden increase in the windspeed. As the wind surge propagated toward the surface, shearinstability generated upward diffusion of turbulent mixing. Wedemonstrate in detail that the height and sequence of the localthermal and shear instabilities associated with the dynamics ofthe density current are responsible for the apparent intermittentturbulence.  相似文献   

2.
Using the unprecedented observational facilities deployed duringthe 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99),we found three distinct turbulent events on the night of 18October 1999. These events resulted from a density current,solitary wave, and internal gravity wave, respectively. Our studyfocuses on the turbulence intermittency generated by the solitarywave and internal gravity wave, and intermittent turbulenceepisodes associated with pressure change and wind direction shiftsadjacent to the ground. Both the solitary and internal gravitywaves propagated horizontally and downward. During the passage ofboth the solitary and internal gravity waves, local thermal andshear instabilities were generated as cold air was pushed abovewarm air and wind gusts reached to the ground. These thermal andshear instabilities triggered turbulent mixing events. Inaddition, strong vertical acceleration associated with thesolitary wave led to large non-hydrostatic pressure perturbationsthat were positively correlated with temperature. The directionaldifference between the propagation of the internal gravity waveand the ambient flow led to lateral rolls. These episodic studiesdemonstrate that non-local disturbances are responsible for localthermal and shear instabilities, leading to intermittentturbulence in nocturnal boundary layers. The origin of thesenon-local disturbances needs to be understood to improve mesoscalenumerical model performance.  相似文献   

3.
We have performed theoretical and laboratory studies of the exchange of two fluids of slightly different density over an underwater sill in a channel of constant width. After extending internal hydraulic theory to incorporate frictional and non-hydrostatic forces, we obtained excellent agreement with experimental results. Both Kelvin-Helmholtz and Holmboe instabilities were observed in the experiments. Measurements of the wavelength and speed of the Holmboe instabilities were consistent with the theoretical predictions.  相似文献   

4.
Observations of a front associated with boundary layer separation from a headland illustrate a mechanism by which horizontal density gradients create intense turbulence and vertical mixing, thus, contributing to water property modification in the coastal zone. Tidal current past an island separates from the coast, creating a shear zone between the primary flow and the slowly moving water in the lee of the island. The density structure on either side of the front may differ due to different origins or degrees of prior mixing. Consequently, there can be horizontal density gradients across the front. Boundary layer separation from the headland begins as a vertical vortex sheet on which instabilities grow to form a sequence of eddies. The presence of horizontal density gradients causes the shear layer to tilt. Tilting and stretching of the sheared flow generates intense circulation. Whirlpools and boils appear at the surface accompanied by vertical motions in which broad areas of upwelling alternate with narrow areas of downwelling. These mix the water throughout its depth; bubbles entrained at the surface reach depths of over 120 m. Such violent mixing weakens stratification associated with the estuarine circulation and aerates water masses passing through the area.  相似文献   

5.
A laboratory experiment was performed to investigate mixing across a density interface which separates two turbulent fluid layers and coexists with a stabilizing buoyancy flux. It was found that the buoyancy flux (q0) across the interface and through the turbulent layers (of depth D) becomes steady and constant in magnitude in the vertical direction, only when , where u is the horizontal r.m.s. velocity at the base of the mixed layers. The results suggest that mixing across the density interface is controlled by a dynamically important buoyancy gradient induced in the turbulent layers and that parameters such as the bulk Richardson number, , where Δb is the interfacial buoyancy jump, are of secondary importance. Measurements are used to infer the mixing mechanism at the interface, the mixing efficiency of stratified fluids and the entrainment law. Some geophysical applications of the results are also discussed.  相似文献   

6.
This study applies acoustic sounding to observe coherent structures in the roughness sublayer (RSL) above tall vegetated surfaces. Data were collected on 22 days during two separate field experiments in summer 2003. A quality control scheme was developed to ensure high data quality of the collected time series. The data analysis was done using both discrete and continuous wavelet transform. The flow in the RSL was found to be a superposition of dynamic Kelvin–Helmholtz instabilities and convective mixing. The characteristic time scales for coherent structures resulting from the dynamic instabilities were observed to be approximately 20–30 s while thermal eddies have much larger time scales of 190–210 s. The degree of vertical coherency in the RSL increases with the flow evolving from neutral to near-convective conditions. This increase in the degree of organisation is attributed to the evolution of attached thermal eddies. The coherent structures resulting from instabilities were found to be present throughout the RSL but do not contribute to the increased vertical coherency. An alternative conceptual approach for the definition of the RSL is proposed, which yields its maximum vertical extent to five times the canopy height.  相似文献   

7.
We investigate numerically and theoretically the nonlinear evolution of a parallel shear flow at moderate Reynolds number which has embedded within it a mixed layer of intermediate fluid. The two relatively thin strongly stratified density interfaces are centered on the edges of the shear layer. We are particularly interested in the development of primary and secondary instabilities. We present the results of a stability analysis which predicts that such flows may be unstable to stationary vortical disturbances which are a generalization of an inviscid instability first considered by G.I. Taylor. We investigate the behavior of these “Taylor billows” at finite amplitude through two-dimensional numerical simulations. We observe that the braid regions connecting adjacent primary Taylor billows are susceptible to secondary, inherently two-dimensional instabilities. We verify that these secondary instabilities, which take the form of small elliptical vortices, arise due to a local intensification of the spanwise vorticity in the braid region.  相似文献   

8.
青藏高原上空气溶胶含量的分布特征及其与臭氧的关系   总被引:7,自引:5,他引:2  
采用1991年10月—2005年11月的HALOE资料,分析了青藏高原(27°~40°N,75°~105°E)上空气溶胶数密度、体积密度、面积密度的分布和变化特征,探讨了它们与臭氧的关系,并且与同纬度带中国东部地区(107°~122°E,27°~40°N)、北太平洋(170°E~170°W,27°~40°N)上空进行了对比。结果表明:高原上空气溶胶的体积密度、面积密度受Pinatubo火山喷发的影响主要发生在1991—1995年,然而气溶胶数密度受火山影响则不如前二者明显;高原上空气溶胶在对流层顶附近存在一个极大值区,在夏季该极大值区位于对流层顶下方(约120 hPa),而其他季节则位于对流层顶上方(约100hPa);青藏高原、中国东部地区、北太平洋三地上空气溶胶数密度的差异主要出现在60 hPa以下的气层,夏季差异最突出,高原上120 hPa附近的气溶胶数密度约为平原上的1.8倍,约为海洋上的5.5倍;在高原上空对流层顶附近以及平流层低层,气溶胶数密度与臭氧体积混合比呈很好的负相关关系,而在20 hPa以上则有明显的正相关关系;对比三地上空气溶胶与臭氧的关系,得到在对流层顶附近及平流层低层气溶胶在高原和平原上空与臭氧的变化呈很好的负相关,其中以高原上空的负相关关系更好,但是在海洋上空气溶胶和臭氧的相关不明显。而在20 hPa以上气层中,三地上空的气溶胶与臭氧的变化都具有很好的正相关关系。  相似文献   

9.
重点介绍和讨论了中性条件下旋转扰动流体中边界层强迫不稳定及其相关的一些问题,阐述了旋转体系中切变驱动边界层不稳定的动力学特征.这些不稳定状态的研究在大气物理学、流体动力学、海洋学等多个领域中引起科学家极大的兴趣,近年来在实验和理论研究中都得到了不断的发展.意大利都灵大学基础物理系地球科学实验组通过水槽旋转实验方法,不断改变水槽启动或结束时的旋转运动速度,以及底部壁面粗糙度等要素,所得到的实验结果与SDBL理论非常一致.  相似文献   

10.
This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were performed on the rotating platform at the Coriolis Laboratory, Grenoble. The rotation, its modulation and density stratification were set to be in the internal wave regime. After applying various data processing techniques we observe internal wave rays, which converge to a limiting state: the wave attractor. At longer time scales we observe a remarkably efficient mixing of the density field, possibly responsible for driving observed sheared mean flows and topographic Rossby waves. We offer the hypothesis that focusing of internal waves to the wave attractor leads to the mixing.  相似文献   

11.
Water mass modification in surface-trapped, near-field river plumes is examined using a 1.5-layer reduced gravity model and a three-dimensional numerical model. Solutions to the layer model are shown to be qualitatively similar to previous observations and three-dimensional simulations of near-field plumes. Analytic analysis of the layer model demonstrates how the near-field plume is controlled by the competing processes of mixing and spreading. The two models are then used to explore the parameter space dependence of density changes within the near-field plume and their associated cross-shore length scales. Both the magnitude of density changes and their length scales are proportional to either estuarine discharge or fresh water discharge; density changes are also inversely proportional to the estuary mouth width. One surprising feature of the parameter space solutions is that the density of water exiting the near-field plume, a measure of the net dilution of the entire near-field plume, is shown to be inversely proportional to local mixing rates. This is because when local mixing is lower, the influence of plume spreading becomes greater; this spreading accelerates the plume, requiring more net mixing to bring the plume back to subcritical flow.  相似文献   

12.
Laboratory experiments have been carried out for the flow along isobaths of simulated shelf-continental slope geometry. Cases of both homogeneous and linearly stratified fluids are considered and the background flows are sufficiently strong to have the flow near the bottom boundary range from transitional to fully turbulent. The background motions are impulsively started and flows with a coast on the right (spin-down) and on the left (spin-up) are considered. The homogeneous spin-down and spin-up processes are smooth in the sense that no vortical structures were found to be of the order of the slope width or larger. Flows reach equilibrium more quickly for spin-down cases, and this is attributed to secondary flows forced by the basin geometry. All of the stratified experiments exhibited large-scale instabilities as evidenced by the generation of slope and basin scale eddy structures and a much slower decay than their homogeneous counterparts.  相似文献   

13.
Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar reflectivity data. The model’s initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.  相似文献   

14.
One-Dimensional Turbulence (ODT), a turbulence model implemented as an unsteady simulation, is applied to the diffusive regime of double-diffusive convection. For this application, no parameter adjustment or other empiricism is required. Computed component fluxes across heat–salt and salt–sugar interfaces are consistent with the Linden–Shirtcliffe picture, applicable at intermediate density ratios, and Newell's model of interface evolution at high density ratios. The experimentally observed onset of a variable regime at density ratios below 2 is reproduced. Simulations of interface formation in a bottom-heated salt-stabilized medium indicate that Fernando's scaling for interface stabilization height may also apply to the height of initial interface formation. The simulations generate staircases resembling those seen in laboratory experiments, and suggest a refinement of a scaling inferred from experiments. Computed results for a thermally forced configuration and an unforced, vertically homogeneous configuration are compared.  相似文献   

15.
Second-order closure models for the canopy sublayer (CSL) employ aset of closure schemes developed for `free-air' flow equations andthen add extra terms to account for canopy related processes. Muchof the current research thrust in CSL closure has focused on thesecanopy modifications. Instead of offering new closure formulationshere, we propose a new mixing length model that accounts for basicenergetic modes within the CSL. Detailed flume experiments withcylindrical rods in dense arrays to represent a rigid canopy areconducted to test the closure model. We show that when this lengthscale model is combined with standard second-order closureschemes, first and second moments, triple velocity correlations,the mean turbulent kinetic energy dissipation rate, and the wakeproduction are all well reproduced within the CSL provided thedrag coefficient (CD) is well parameterized. The maintheoretical novelty here is the analytical linkage betweengradient-diffusion closure schemes for the triple velocitycorrelation and non-local momentum transfer via cumulant expansionmethods. We showed that second-order closure models reproducereasonably well the relative importance of ejections and sweeps onmomentum transfer despite their local closure approximations.Hence, it is demonstrated that for simple canopy morphology (e.g.,cylindrical rods) with well-defined length scales, standard closureschemes can reproduce key flow statistics without much revision.When all these results are taken together, it appears that thepredictive skills of second-order closure models are not limitedby closure formulations; rather, they are limited by our abilityto independently connect the drag coefficient and the effectivemixing length to the canopy roughness density. With rapidadvancements in laser altimetry, the canopy roughness densitydistribution will become available for many terrestrialecosystems. Quantifying the sheltering effect, the homogeneity andisotropy of the drag coefficient, and more importantly, thecanonical mixing length, for such variable roughness density isstill lacking.  相似文献   

16.
A companion paper (Part I: Toma and Webster 2008), argued that the characteristics of the mean Intertropical Convergence Zone (ITCZ) arise from instabilities associated with the strong cross-equatorial pressure gradient (CEPG) that exists in the eastern Pacific Ocean as a result of the latitudinal sea-surface temperature (SST) gradient. Furthermore, it was argued that instabilities of the mean ITCZ resulted in the in situ development of easterly waves. Thus, in Part I, it was hypothesized that the mean and transient state of eastern Pacific convection was due to local processes and less so to the advection of waves from the North Atlantic Ocean. To test this hypothesis and, at the same time, consider others such as a possible role of the equatorial and subtropical orography in generating local instabilities, a series of controlled numerical experiments are designed using the WRF regional model. The domain of the model was configured to include the western Atlantic Ocean, the Isthmus of Panama and the eastern Pacific Ocean to 155°W. Lateral boundaries were set at 40°N and 40°S, thus containing the mountains of Central America, the Andes and the Sierra Madre of Mexico. In a series of experiments, analysis products were used as boundary conditions that were successively updated four times per day, set as 10-day running average fields or as running mean monthly fields. Finally, the model was run with topography essentially eliminated over the land areas. Although there are differences between the details of the resultant fields, the location of mean convection and the form of the transients remain the same. It is concluded, in support of the theoretical and diagnostic studies of Part I that orographic forcing or waves generated in the North Atlantic Ocean are not the major causes of the mean and transient nature of disturbances in the eastern Pacific.  相似文献   

17.
18.
Laboratory experiments were carried out to investigate the interaction between turbulent line buoyant plumes and sharp density interfaces, with the aim of using the results to interpret oceanic observations pertinent to crack openings in the polar ice-cap (leads). These openings take the form of long narrow channels, and are often modeled as line bouyant plumes. The plumes descend as in a homogenoous fluid, impinge on the density interface, and then spread horizontally as gravity currents. Depending on the Richardson number , where Δb is the buoyancy jump across the interface, lD is the half-width of the plume before the impingement and q0is the buoyancy flux per unit length of the source, different flow patterns were identified. When Ri < 0.5, the plumes penetrate deep into the bottom layer, deflect horizontally and then spread while showing little vertical rise. When 0.6 < Ri < 5, the penetration is significant, but the fluid bounces back after entraining heavy fluid from the lower layer and then spreads horizontally above the interface as a gravity current. Appreciable mixing between this current and the lower layer was detected when Ri <1. When Ri > 10, the penetration was small and a sharp-nosed gravity current emerged some time after the impact. Measurements were made on the penetration depth, the velocities of the gravity current and the subsurface flow towards the plume, the entrainment rate and other wave parameters. Possible implications of the results for oceanic cases are also discussed.  相似文献   

19.
The effect of fluctuating daily surface fluxes on the time-mean oceanic circulation is studied using an empirical flux model. The model produces fluctuating fluxes resulting from atmospheric variability and includes oceanic feedbacks on the fluxes. Numerical experiments were carried out by driving an ocean general circulation model with three different versions of the empirical model. It is found that fluctuating daily fluxes lead to an increase in the meridional overturning circulation (MOC) of the Atlantic of about 1 Sv and a decrease in the Antarctic circumpolar current (ACC) of about 32 Sv. The changes are approximately 7% of the MOC and 16% of the ACC obtained without fluctuating daily fluxes. The fluctuating fluxes change the intensity and the depth of vertical mixing. This, in turn, changes the density field and thus the circulation. Fluctuating buoyancy fluxes change the vertical mixing in a non-linear way: they tend to increase the convective mixing in mostly stable regions and to decrease the convective mixing in mostly unstable regions. The ACC changes are related to the enhanced mixing in the subtropical and the mid-latitude Southern Ocean and reduced mixing in the high-latitude Southern Ocean. The enhanced mixing is related to an increase in the frequency and the depth of convective events. As these events bring more dense water downward, the mixing changes lead to a reduction in meridional gradient of the depth-integrated density in the Southern Ocean and hence the strength of the ACC. The MOC changes are related to more subtle density changes. It is found that the vertical mixing in a latitudinal strip in the northern North Atlantic is more strongly enhanced due to fluctuating fluxes than the mixing in a latitudinal strip in the South Atlantic. This leads to an increase in the density difference between the two strips, which can be responsible for the increase in the Atlantic MOC.  相似文献   

20.
重点介绍和讨论了中性条件下旋转扰动流体中边界层强迫不稳定及其相关的一些问题,阐述了旋转体系中切变驱动边界层不稳定的动力学特征。这些不稳定状态的研究在大气物理学、流体动力学、海洋学等多个领域中引起科学家极大的兴趣,近年来在实验和理论研究中都得到了不断的发展。意大利都灵大学基础物理系地球科学实验组通过水槽旋转实验方法,不断改变水槽启动或结束时的旋转运动速度,以及底部壁面粗糙度等要素,所得到的实验结果与SDBL理论非常一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号