首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports new isotope-geochemical data on Late Paleocene-Early Eocene basalts from the central part of the Kolyuchin-Mechigmen graben, eastern Chukotka Peninsula. The distribution of the major and trace elements and trace-element ratios indicates that the basalts were formed in a marginal-continental rift setting. The peculiar feature of the basalts is a combination of depleted within-plate and suprasubduction geochemical signatures, which make the volcanic rocks from Mt. Otdel’naya different from rocks of suprasubduction volcanic belts and from tholeiites and alkaline lavas of continental rifts and oceanic islands. Extremely high 87Sr/86Sr ratios in the studied basalts as compared to those of similar volcanic rocks from extension zones are probably related to the involvement of carbonate material in the magma generation zone.  相似文献   

2.
The Nd and Sr isotopic ratios on a suite of continental alkali basalts from Marie Byrd Land, West Antarctica, define a change in the source over the range of K/Ar dates between 1 and 28 m.y. ago. The 87Sr/86Sr isotopic ratios (0.7026 to 0.7031) are unusually low for continental alkali basalts, although the corresponding 143Nd/144Nd ratios (0.51283 to 0.51299) are similar to previously reported values. On a 87Sr/86Sr vs. 143Nd/144Nd diagram, they define a trend on the low 87Sr/86Sr side of the “mantle array”, which has a slope steeper than the mantle array. An explanation for the light rare earth elements (LREE) enrichment of the alkali basalts, with high 143Nd/144Nd ratios and low 87Sr/86Sr ratios, is suggested by a model which modifies the source region with a mantle-derived, CO2-enriched metasomatic fluid.  相似文献   

3.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

4.
The petrology and geochemistry of the Azores Islands   总被引:7,自引:0,他引:7  
Forty lavas from the Azores Islands have been analyzed for 87Sr/86Sr ratios, major elements, first transition series metals, and LIL elements. The samples belong to the alkali basalt magma series but range from transitional hy-normative basalts from Terceira to basanitoids from Santa Maria. Differentiated lavas include both typical trachytes and comenditic trachytes and comendites. Major and trace element concentrations define smooth trends on variation diagrams, and these trends can be related to phases crystallizing in the rocks. Systematic interisland differences are also apparent in these variation diagrams. LIL element concentrations in island basalts are roughly twice as high as those in tholeiites from the adjacent Mid-Atlantic Ridge which transects the Azores Plateau. 87Sr/86Sr ratios in lavas from 6 of the 9 islands range from 0.70332 to 0.70354, a range similar to that found in tholeiites from the Mid-Atlantic Ridge transect of the Azores Plateau. This suggests that lavas from these islands and this portion of the Mid-Atlantic Ridge may be derived from a similar source. However, lavas from the islands of Faial and Pico have 87Sr/86Sr ratios up to 0.70394 and ratios in Sao Miguel lavas range up to 0.70525, suggesting basalts from these islands are derived from a chemically distinct source. Differences in the average LIL element concentrations of the least fractionated ridge tholeiites from the Azores Plateau and alkali basalts from the islands result from differences in extent of partial melting and residual mineralogy. The alkali basalts are derived by roughly half as much melting as are the tholeiites. Trace element concentrations in Azores peralkaline lavas preclude their derivation by partial melting of peridotitic mantle or basaltic crust; rather the data suggest they are produced by fractional crystallization of a basaltic parent.  相似文献   

5.
《International Geology Review》2012,54(15):1927-1939
ABSTRACT

The 87Sr/86Sr minimum of the Capitanian seawater is one of the most significant features in the Phanerozoic seawater 87Sr/86Sr history. In order to assess possible contribution of the Emeishan large igneous provinces (LIPs) to strontium isotope evolution of the Capitanian seawater, 87Sr/86Sr ratios were measured from the Capitanian limestones which are locally interlayered with the Emeishan basalts. The limestones underlying the Emeishan basalts have high 87Sr/86Sr ratios (0.7070–0.7074). However, extremely low 87Sr/86Sr ratios (0.7068–0.7070) were identified in the late Capitanian Jinogondolella prexuanhanensisJ. xuanhanensis zones, which correspond to the eruption time of the Emeishan LIP. The temporal coincidence of these two phenomena supports the idea of a potential linkage between Capitanian 87Sr/86Sr minimum and eruption of this igneous province. The strong submarine hydrothermal activity and erosion of the Emeishan LIP could have released large amounts of non-radiogenic Sr to the oceans and play an important role in strontium isotope evolution of the seawater.  相似文献   

6.
Strontium isotopic data for megacrysts and lavas from six eruptive centers within the Newer Basalts province of southeastern Australia show that megacrysts of clinopyroxene are in isotopic equilibrium with associated basalts, but that megacrysts of kaersutite, ferrokaersutite, orthopyroxene and anorthoclase may exhibit slight disequilibrium with their host basalts. Furthermore, the anorthoclase megacrysts may be either more or less radiogenic than their hosts. The 87Sr/86Sr ratios for 14 basalts from throughout the province vary from 0.7035 to 0.7045 and it is proposed that anorthoclase, amphibole and orthopyroxene megacrysts which crystallized in isotopic equilibrium with one magma may have been caught up in a pulse of a later magma of a different isotopic composition. The variations in the 87Sr/86Sr ratios for the basalts are attributed to variations in the isotopic composition of their source regions. Such isotopic heterogeneity is supported by published data for ultramafic xenoliths which occur in the Newer Basalts lavas.  相似文献   

7.
Major and trace element data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORE) — although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge.Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.  相似文献   

8.
87Sr/86Sr ratios of alkali olivine basalts, nepheline basanites and olivine nephelinites of Miocene age from the northern Hessian Depression vary between 0.7032 and 0.7036. Tholeiitic rocks from this area, which are possibly affected by crustal contamination, have more radiogenic Sr (0.7035 to 0.7042). Peridotite xenoliths with coarse protogranular (10 samples) and with porphyroclastic textures (2 samples) contain K- and Na-rich glasses which are products of reaction of metasomatic fluids with depleted peridotite. The Sr abundance in xenoliths is related to the amount of glass (and phlogopite).Sr ranges from 11 ppm to 147 ppm and 87Sr/86Sr ratios from 0.7033 to 0.7039. The isotopic ratios are neither correlated with Sr concentrations nor with Rb/Sr ratios. 87Sr/ 86Sr ratios of etched clinopyroxenes range from 0.7028 to 0.7040. In some xenoliths, clinopyroxenes differ from the whole rock samples significantly in their isotopic composition.If almost all of the pre-metasomatic Sr was located in the clinopyroxenes, the metasomatically introduced Sr ranges from 35 to 80% of the whole rock Sr. The calculated isotopic composition ranges from 0.7033 to 0.7040 for the majority of the xenoliths. For two pyroxenes which are not in isotopic equilibrium with the whole rock, the age of the metasomatic event could be estimated on the base of diffusion of Sr in clinopyroxene. Even assuming a diffusion coefficient as low as 10–15 cm2s–1 the time between the metasomatic alteration and the eruption of the basaltic host magma must be shorter than 1 Ma.The 87Sr/86Sr ratios of the basalts are interpreted as products of mixtures of a depleted component ( 0.7028) and metasomatic fluids (0.7035–0.7053) in their source peridotite.  相似文献   

9.
I.E.M. Smith  W. Compston 《Lithos》1982,15(3):199-206
Strontium isotope data are presented from 28 rock samples representing four distinct episodes of late Cenozoic volcanism in southeastern Papua. Eocene tholeiitic basalts have initial 87Sr/86Sr ratios (0.7037) which are higher than those in chemically comparable basalts and are thought to have been enhanced by rock-sea water interaction. Late Cenozoic are trench type volcanoes in the Papuan islands have initial 87Sr/86Sr ratios which show little variation (0.7041±2) in contrast to those from the contiguous Papua New Guinea mainland (0.7036-0.7054). This isotopic discontinuity does not appear to be due to contamination by immediately underlying sialic metamorphics. High-K trachytes in the Lusancay Islands north of the late Cenozoic are have comparable initial 87Sr/86Sr ratios. Wide variation (0.703-0.710) in the initial ratios measured in a group of apparently closely related rocks ranging in composition from transitional basalt to peralkaline rhyolite cannot be explained by differences in age or by late magmatic fractionation and continue to pose an enigma.  相似文献   

10.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

11.
The Transcaucasian intermountain area is part of the Caucasus segment of the Alpine-Mediterranean mountain belt. The continental intraplate basalts of the study area range in age from 6.10 ± 0.20 to 6.40 ± 0.20 Ma. The basalt erupted from monogenetic volcanoes are formed by lava flows and their pyroclastic equivalents. They are generally characterized by low volumes, are predominantly subalkalic with minor alkaline composition. The ultramafic xenoliths have not been identified in the basalts. The basalts may be subdivided into porphyritic and oligophyric groups. Fractional crystallization plays an important role in the petrogenesis of basalts. Almost all the studied samples showed different degrees of fractionation of olivine ± plagioclase ± clinopyroxene. No significant contamination of basalts with upper continental crustal material was confirmed by Rb/Sr and Rb/Ba ratios or by Sr, Nd isotopic and geochemical composition (87Sr/ 86Sr = 0.703683-0.704531±2; 143Nd/144Nd = 0.512788-0.512848 ±10; 147Sm/144Nd = 0.1036-0.1144 ±2-3). The studied basalts display, compared to heavy rare earth elements (HREE), highly fractionated light rare earth elements (LREE) with La/Yb=9.25-24.00. This makes them similar to ocean island basalts (OIB), which is also evidenced by Ce/Pb, La/Nb, Zr/Nb, Zr/Y ratios. The Dy/Yb-La/Yb and Yb-La/Yb and 87Sr/86Sr-143Nd/144Nd ratios indicating a “mixed” evolution of basalt-forming magmas. The basalt feeding magma chambers of the Transcaucasian intermountain area seem to be formed from a mixture of partial melting of Normal-MORB (Mid-Ocean Ridge Basalt) type upper mantle (garnet and spinel lherzolite) and EMII type components with strong ocean island basalts (OIB)-like signature.  相似文献   

12.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

13.
Cenozoic lavas from Hainan Island,South China,comprise quartz tholeiite,olivine tholeiite,alkali basalt,and basanite and form a continuous,tholeiite-dominated,compositional spectrum.Highly incompatible elements and their relationships with isotopes in these lavas are shown to be useful in evaluating mantle-source composition,whereas modeling suggests that ratios of elements with bulk partition coefficients significantly larger than those of Nb and Ta may be sensitive to partial melting.Th/Ta and La/Nb ratios of alkali basalts are lower than those of tholeiites,and they are all lower than those of the primitive mantle,These ratios correlate positively with ^207Pb/^204Pb and ^87Sr/^86Sr ratios.Such relationships can be explained by mixing of depleted and enriched source components.A depleted component is indicated by alkali basalt compositions and is similar to some depleted OIB (PREMA).The enriched component,similar to sediment compositions,is indicated by tholeiites with high LILE/HFSE,^207Pb/^204Pb,and ^87Sr/^86Sr ratios.In general,basalts from Hainan and the South China Basin(SCB)share common geochemical characters.e.g.high Rb/Sr,Th/Ta,^207Pb/^206Pb,and low Ba/Th ratios.Such a geochemical trend is comparable to that of EMII-type OIB and best explained as the result of subduction.Occurrence of these characteristics in both continental Hainan basalts and SCB seamout basalts indicates the presence of a South China geochemical domain that exists in the mantle region below the lithosphere.  相似文献   

14.
《International Geology Review》2012,54(11):1350-1362
ABSTRACT

Recent studies show that crustal carbonates recycled into the mantle can be traced using Mg isotopes of basalts. However, the species of recycled carbonates are poorly constrained. Carbonates have lower δ26Mg values and higher 87Sr/86Sr ratios relative to the mantle, but different carbonate species display different mixing curves with the mantle in the Mg-Sr isotopic diagram because of differences in their Sr and Mg contents. Thus a combined study of Mg-Sr isotopes can constrain the species of deeply recycled carbonates. Here, we present newly determined 87Sr/86Sr ratios of the <110 Ma basalts from Eastern China, and together with published Mg isotopic data we evaluate the species of recycled carbonates in the mantle and discuss their implication. The <110 Ma basalts display low δ26Mg values of ?0.60 to ?0.30‰ and relatively low initial 87Sr/86Sr ratios of 0.70328 to 0.70537, suggesting that their mantle source was hybridized by recycled carbonates with a light Mg isotopic composition which had more significant effects on Mg than Sr isotope ratios. Mg-Sr isotopic data indicate that the recycled carbonates consist of magnesite and aragonite, but the possibility of calcite and dolomite cannot be eliminated. Based on the carbonated peridotite solidus, the equilibrium line between dolomite and magnesite + aragonite, as well as the mantle adiabat, the initial melting depth of the carbonated mantle, the source region of the studied basalts, was constrained at ~300–360 km. Thus, the subducted depth of the west Pacific slab underlying the carbonated mantle and supplying recycled carbonates should be greater than ~300–360 km, consistent with the seismic tomography result that the west Pacific slab now stagnates in the mantle transition zone.  相似文献   

15.
Newly obtained data highlight strong geological and geochemical differences between Late Cretaceous-Paleogene and Eocene-Middle Miocene volcanic rocks in the southern Korean Peninsula. The rocks are spatially separated and differ in the proportions of acid and basic varieties. The Late Cretaceous-Paleogene basalts are similar to suprasubduction rocks in having high Al2O3, LILE, and Th contents, and low TiO2 and HFSE contents. The Miocene basalts have a composition intermediate between those of subduction and within-plate rocks. Compared to subduction rocks, they are lower in radiogenic Sr, K, LILE (Cs, Rb, Ba), and Th and higher in MgO, Ni, Ti, and HREE. A drastic change in U, Ba, Rb, Ce, Th, and 87Sr/86Sr in the basic volcanic rocks of the southern Korean Peninsula at the Late Cretaceous-Paleogene boundary suggests a decreasing sedimentary contribution to the magma. The latter testifies to a change in the direction of the motion of the oceanic and continental plates, increasing compressional forces and, finally, the cessation of subduction. The synthesis of the original authors and published data on Cenozoic volcanism of the southern Korean Peninsula and the eastern Sikhote Alin showed that the tectonic evolution of the eastern Eurasian margin occurred in four stages: Late Cretaceous-Paleogene, Eocene-Oligocene, Early, and Middle-Miocene.  相似文献   

16.
山西省繁峙玄武岩位于华北克拉通重力梯度带附近,是华北克拉通中部新生代玄武岩重要组成部分。前人全岩K-Ar测年结果为26.3~24.3Ma。对繁峙地区苏孟庄和应县两地玄武岩的地球化学特征研究表明,其微量元素和同位素均具有类OIB特征,即富集不相容元素,轻、重稀土元素分馏明显((La/Yb)N=8.42~21.60),不存在Sr、Eu负异常,Sr同位素比值(87Sr/86Sr=0.703848~0.704870)较低,Nd(143Nd/144Nd=0.512617~0.513057)和Hf(176Hf/177Hf=0.282873~0.283001)同位素比值较高,Pb同位素比值分别为206Pb/204Pb=17.2~17.9,207Pb/204Pb=15.3~15.4和208Pb/204Pb=37.5~37.9。结合岩相学特征和主量元素特征,我们推断繁峙新生代玄武岩是软流圈低程度部分熔融结果,并存在岩石圈物质的加入,岩浆上升时在岩石圈地幔条件下的岩浆房内经历了以橄榄石、单斜辉石为主的分离结晶作用,岩浆因快速上升而地壳混染程度甚低。苏孟庄碱性玄武岩具有较深的熔融深度和较低的熔融程度,而应县亚碱性玄武岩熔融深度较浅,熔融程度较高。结合重力梯度带附近其他地区的新生代玄武岩的研究,我们推测重力梯度带附近新生代的火山活动可能起源于西部软流圈地幔向东流动越过重力梯度带时的减压部分熔融,该地区广泛分布的断裂带为岩浆上涌提供了通道。本文为中国东部新生代玄武质火山活动的岩石成因学研究提供了新的视角。  相似文献   

17.
Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet   总被引:6,自引:0,他引:6  
Basaltic lavas at Renbu, Southern Tibet are associated with the Xigaze ophiolite in the Yarlung-Zangbo suture zone. They are alkaline lavas rich in large ion lithophile elements (LILE, Ba, Rb and Sr) and high field strength elements (HFSE, Nb, Ta, Zr and Hf), but poor in Cr, Co and Ni. All of the rocks have chondrite-normalized REE patterns enriched in light rare earth elements (LREE), comparable to modern basalts of the Society Islands, Kerguelen Plateau and Broken Ridge. Abundances of some immobile or moderately immobile elements (Nb, Ta, Zr, Hf, Y, Ti and REE) are also comparable to Kerguelen alkaline basalts. The Renbu basalts are geochemically similar to oceanic island basalts (OIB) and have some elemental ratios, such as Nb/Ta ratios = 15.7–18.1, Th/Nb =  0.06–0.10, La/Nb = 0.59–0.83 and Th/Ta = 1.03–1.52, similar to the primitive mantle. Their 87Sr/86Sr ratios (0.70453–0.70602) are relatively high, similar to OIB. In the 87Sr/86Sr vs. εNd(t) diagram, the Renbu basalts plot along a trend from N-MORB to EMII (enriched mantle II), suggesting the involvement of at least two mantle sources in their generation. The Renbu basalts represent seamount volcanism associated with the Xigaze ophiolite. They formed from an OIB-type mantle source within the Neo-Tethyan Ocean that had a composition similar to the modern Indian Ocean mantle.  相似文献   

18.
The Newer Volcanics Province of Victoria and South Australia consists of a major region of mainly alkaline basalts within which are two restricted areas containing strongly differentiated flow‐rocks. Typical alkalic basalts from this widespread province have K‐Ar ages from 4.5 to 0.5 m.y. and initial 87Sr/86Sr ratios from 0.7038 to 0.7045. Contrastingly, in the Macedon area of differentiated lavas, flow compositions range from limburgite to soda trachyte, with K‐Ar ages from 6.8 to 4.6 m.y. and initial 87Sr/86Sr ratios from 0.7052 to 0.7127. These differentiated rocks therefore are older, and some of them may have been contaminated by reaction with more radiogenic basement rocks during differentiation. Alternatively, the variation in initial Sr‐isotope composition may have resulted from varying isotopic composition of partial melts from the immediate source rocks. The most felsic of the differentiated rocks, soda trachyte, is extremely enriched with Rb relative to Sr; one of the three restricted outcrops of this rock (Camel's Hump) yields a total‐rock Rb‐Sr isochron age of 6.3 ± 0.6 m.y. with an initial 87Sr/86Sr ratio of 0.7127. K‐Ar sanidine ages reported for the three outcrops of trachyte are identical to each other and to the Rb‐Sr isochron result.  相似文献   

19.
Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts.Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks.Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios.The primitive basalts have: 206Pb/204Pb 18.09–18.34, 207Pb/204Pb 15.5, 208Pb/204Pb 37.6–37.9, 87Sr/86Sr 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises.Publication authorized by the Director, U.S. Geological Survey  相似文献   

20.
At 39.5° S in the southern volcanic zone of the Andes three Pleistocene-recent stratovolcanoes, Villarrica, Quetrupillan and Lanin, form a trend perpendicular to the strike of the Andes, 275 to 325 km from the Peru-Chile trench. Basalts from Villarrica and Lanin are geochemically distinct; the latter have higher incompatible element abundances and La/Sm but lower Ba/La and alkali metal/La ratios. These differences are consistent with our previously proposed models involving: a) a west to east decrease in an alkali metal-rich, high Ba/La slab-derived component which causes an across strike decrease in degree of melting; or b) a west to east increase in the contamination of subduction-related magma by enriched subcontinental lithospheric mantle. Silicic and mafic lavas from the stratovolcanoes have overlapping Sr, Nd and O isotopic ratios. Silicic lavas also have geochemical differences that parallel those of their associated basalts, e.g., rhyolite from Villarrica has lower La/Sm and incompatible element contents than high-SiO2 andesite from Lanin. At each volcano the most silicic lavas can be modelled by closed system fractional crystallization while andesites are best explained by magma mixing. Apparently crustal contamination was not an important process in deriving the evolved lavas. Basaltic flows from small scoria cones, 20–35 km from Villarrica volcano have high incompatible element contents and low Ba/La, like Lanin basalts, but trend to higher K/Rb (356–855) and lower 87Sr/ 86Sr (0.70361–0.70400) than basalts from either stratovolcano. However all basalts have similar Nd, Pb and O isotope ratios. The best explanation for the unique features of the cones is that the sources of SVZ magmas, e.g., slab-derived fluids or melts of the subcontinental lithospheric mantle, have varying alkali metal and radiogenic Sr contents. These heterogeneities are not manifested in stratovolcano basalts because of extensive subcrustal pooling and mixing. This model is preferable to one involving crustal contamination because it can account for variable Sr isotope ratios and uniform Nd and Pb isotope ratios among the basalts, and the divergence of the cones from across-strike geochemical trends defined by the stratovolcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号