首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We discuss the possibility of exciting whistler mode waves (WMWs) in the Earth's ionosphere, by using two high frequency beams of electromagnetic waves (f1f2) suitably orientated to the geomagnetic field Ho, so that a non-linear resonant interaction can take place in the natural ionospheric plasma, approximately at the altitude of the F2 maximum electron density. Within the limitations imposed by ionospheric inhomogeneities in the interaction region, it should be possible to excite a WMW which propagates along a predetermined direction, e.g. parallel to Ho.

If we assumef1 andf2 to be approx 30 MHz (i.e. well above the ionospheric plasma frequency), this method would make it possible to select and vary the frequency range of the excited WMW up to a few hundreds kHz without substantial alterations to the high frequency transmitting system.

Since the two beams should form an angle close to 90° to the direction of propagation of the WMW, this technique may prove particularly suitable for active wave experiments at low geomagnetic latitudes, where the geometry of the geomagnetic field limits the feasibility of direct wave injection experiments.

Using the results of theoretical calculations of the three wave coupling coefficients, it will be shown that the transmitters required to produce WMWs with field strengths comparable to that of naturally occurring strong whistlers are substantial, but feasible.  相似文献   


2.
Calculations of the properties of the ionospheric duct centered at the F2 layer are carried out with a view to investigating the ducted propagation of Pc1 micropulsations in directions out of the geomagnetic meridian plane. For a horizontally uniform ionosphere, duct properties are found to be essentially the same in all horizontal directions. Propagation characteristics of ducted waves, however, vary according to ionospheric and sunspot conditions. In practice, therefore, it is expected that horizontal propagation over a large recording network is not isotropic because of the diurnal changes in the ionosphere.  相似文献   

3.
Measurements of the density at the F2 peak (NmF2) were obtained by the Boulder, Colorado, ionosonde as part of the SUNDIAL-86 campaign. The measurements were made during a period of low to moderate geomagnetic activity following a “disturbed” day. These measurements were then used to estimate the height of the F2 peak (hmF2). A three-dimensional time-dependent model of Earth's ionosphere was used to calculate NmF2 and hmF2 using the vertical plasma drift as a free parameter. Since the plasmasphere-ionosphere exchange flux can remain upward during the night for these conditions, different feasible flux scenarios were inputed to the ionospheric model. These different flux scenarios had a large effect on the “induced” vertical plasma drifts required to match the measurements (i.e. at times greater than a factor of 2 in speed or a difference in direction). Futhermore, uncertainty in the O+---O collision frequency changes the required vertical plasma drift at night. Despite knowledge of hmF2, interpretation of the vertical plasma drifts as meridional neutral winds is compromised by a lack of knowledge of the plasmasphere-ionosphere exchange flux following disturbed days.  相似文献   

4.
The upper thermosphere and F-region ionosphere system at 43°N is modelled for equinox and moderate solar conditions via a series of iterative calculations employing a thermospheric wind model and a one-dimensional ionospheric model which are mutually coupled. Several feedback loops within the system involving F2-layer peak height, F2-layer peak density, zonal wind, meridional wind, and Coriolis force are investigated to better understand the interactive aspect of ionosphere-thermosphere coupling. The interplay of primary importance involves the night-time ascent/descent of the F-layer due to equatorward/poleward neutral winds, the resulting changes in ion drag presented to the meridional and zonal wind fields, and the Coriolis force modification of the ion drag coupling. Wind shear and plasma profile shape are not significantly coupled. For magnetically undisturbed conditions, self-consistent treatment of these effects modifies a non-interactive “control” calculation by 20–35 m s−1 in the wind field. During geomagnetically disturbed periods interactive processes play a more crucial role in determining thermospheric and ionospheric storm responses. Our calculations reveal wind enhancements of up to 100 m s−1 associated with the lifting and negative-phase depletion of the F-region for prolonged magnetic disturbance conditions, the former mechanism accounting for a major portion of the effect.  相似文献   

5.
This paper derives the basic propagation characteristics of hydromagnetic waves in various layers of the ionosphere. It is shown that propagation in the upper ionosphere and the F2 layer is largely isotropic. In the lower region of the ionosphere there are two possible modes of propagation, both being anisotropic. Propagation characteristics of waves in this lower region, however, are relatively independent of the direction of horizontal propagation. Calculations of intrinsic wave attenuation show that ducted propagation of Pc 1 signals over appreciable horizontal distances may only take place in the upper layers of the ionosphere.  相似文献   

6.
The method of identifying absorption line systems in QSO spectra (Cui et al. 1983; Chen et al. 1983) is further developed here. Certain limitations of the method and their improvements are discussed. Certain other problems requiring further study are pointed out. The improved method is applied to PKS 0528-250, and gives two new absorption line systems Za = 0.065 and 0.0345 in addition to the four systems Za = 2.8110, 2.8130, 2.5275, 2.1410, consistent with the systems A1A2, B, C of Norton et al. (1980). However, the systems D1, D2, E, F and G of Chen and Norton (1984) are not recovered. The reason for this discrepancy is discussed.  相似文献   

7.
A general analysis of ionospheric conditions has been made in the light of possible ionic reactions occurring in the upper atmosphere. Data obtained on various parameters, such as ionic production and recombination, show that precise knowledge of the spectral distribution of solar radiation is needed and that other experimental determinations on dissociative recombinations are required.

The ionic complexity of the ionosphere is underlined by describing how the atomic ions O+ and N+ react with N2, O2 and NO molecules. The behavior of the molecular ions N+2, O+2and NO+depends on a group of simultaneous processes involving charge transfers and ionatom interchanges which are more important than dissociative recombinations. The altitude distribution of ions is exemplified by discussing the relative importance of various loss coefficients in the D-, E- and F-regions. It is seen that molecular nitrogen ions are subject to important charge transfer processes, that nitric oxide ions are always final products destroyed only by dissociative recombination. Additionally, the entire production of atomic oxygen ions is related to the photoionization of molecular nitrogen. Some information is also given on possible anomalies in the ratio of O+2 and NO+ densities in the lower ionosphere. From the lack of sufficient experimental information on ionic processes it is shown that a precise analysis of ionospheric behavior remains highly speculative.  相似文献   


8.
By using the daily averages of F10.7 in 1956—2003 and adopting the method of Morelet wavelet transform, the characteristics of the quasi-27d oscillations and their relation with the 11-year cycle of solar activity are analyzed. The results demonstrate that the amplitude and period of the quasi-27d oscillations of F10.7 exhibit obvious phenomena of short-tern variations. The degrees of variations in various years differ greatly. In some years, the undulations are quite violent. In periods of several days to several tens of days, the change of amplitude may attain ten more times, and the period may change abruptly by several days or even ten more days. In some years, the changes of amplitude are rather large, yet the undulations are small and the period is comparatively steady. In the annual averages of the variation of quasi-27d oscillaions there appear evident changes from year to year, and this is conspicuouly related to solar activity. Generally speaking, the higher is F10.7, the larger is the amplitude of quasi-27d oscillations. Nevertheless, in the peak of the 19th cycle the values of F10.7 is higher than those of all the other cycles, yet the amplitude of quasi-27d oscillations is lower than those of other cycles. The period of quasi-27d oscillations also exhibits evident changes from year to year. Except certain individual years (e.g., 1987), the annual averages vary in the range from 24 to 31 days, and this has no evident relation with the period of solar activity. The mean period in 48 years is 27.3d. On the whole, the period shows a tendency of gradual shortening. In 48 years, it has decreased by about 1.5d. The causes of quasi-27d oscillations are very complicated, and this awaits further deepgoing investigation.  相似文献   

9.
Electromagnetic waves in the frequency range 0.2–11 Hz have been detected onboard the GEOS-1 and -2 satellites. The purpose of this paper is to report on these observations. The three orthogonal magnetic sensors allow us to determine the polarization of the waves. Two kinds of waves are commonly observed, which can easily be distinguished by their polarization.

(1) Waves with a magnetic field aligned with the DC magnetic field. These events often present a typical harmonic structure. The fundamental—which is not always observed—is often in the neighbourhood of the proton gyrofrequency FH+. These waves are generally observed above FH+. We will show that these emissions can be interpreted as magnetosonic waves destabilized by energetic protons (E 15 keV) with a ringlike distribution function.

(2) Waves with a magnetic field in a plane perpendicular to the DC magnetic field. These emissions are identified as Ion Cyclotron Waves (ICW's). These waves can, under certain conditions, propagate along the line of force of the magnetic field and reach the ground. They can be identified with the well-known Pcl oscillations, which generally have a clear periodic structure. In contrast these periodic structures are seldom observed onboard the satellites. At the geostationary orbit, these emissions exist in limited frequency domains, which are well organized by the helium gyrofrequency FHe+.  相似文献   


10.
Air density at a height of 180–200 km from July 1967 to September 1969 has been determined from analysis of the high eccentricity orbit of satellite 1967-31A. The data show good correlation between sudden density increase and geomagnetic disturbance. The increases for disturbances of equal strength are approximately 40% greater during night-time than daytime hours. The day-night influence is also observed in the changes in density with changes in the solar flux index, F10. The 27-day density variation is predominant mainly during night-time, although the atmospheric response to F10 variations is quite variable regardless of local time. A semi-annual variation of approx. 40% is observed. Also found is a 25% diurnal variation for heights near 170–180 km, which is in good agreement with the CIRA 1972 atmosphere.  相似文献   

11.
Intensified Reticon spectra have been obtained at a high dispersion for the Algol system, RT Persei. They were measured by the cross-correlation technique. The spectroscopic elements, revised for the primary component and determined for the secondary for the first time, are: T0 = HJD 2,446,038.9332, K1 = 55.0, K2 = 194.7, V0 = −8.3 km/s. A mass ratio q = m2/m1 = 0.282 is deduced. A circular orbit is adopted. The spectrum of the primary is F5V, and the secondary is a subgiant. With the elements determined here and the published photometric parameters, the absolute dimensions of the binary are: A = 4.20, R1 = 1.20, R2 = 1.08 R; M1 = 1.08, M2 = 0.30 M.  相似文献   

12.
We have determined for the first time a spectroscopic orbit for WX Cnc. The orbital elements are V0 = +9.8 km/s, k1 = 110.2 km/s, K2 = 149.0 km/s, To = HJD 2446 480.0309. After combining with the published photometric results, we derive the the following absolute parameters: A = 6.32R, R1 = 1.53R, R2=1.18R, M1 = 1.29 M, M2 = 0.96M. The spectroscopic mass-ratio is q = 0.74.  相似文献   

13.
If neutrinos have mass, we give reasons for a possible pattern of three (squaed) mass eigenvalues: m12 (2.8−5.8) (eV)2, m22 0.01 (eV)2, m32 (1.5−1) × 10−4 (eV)2. The flavor states νμ and νe are mixtures of the eigenstates with m2 and m3 with a significant mixing, corresponding to an effective mixing angle of about 0.45. The ντ is nearly the state with m1; the other two effective mixing angles are about an order of magnitude smaller than 0.45. There is a marked similarity to mixing in the quark sector.  相似文献   

14.
The theory of hydromagnetic-wave in the upper F2-region, in which electrons are in a transitional regime from collisional to collisionless conditions and ions are in a collisionless state, is examined. Derivation of the governing equations is based on the fact that the isotropic electrons are fluid-like, and the anisotropic ions follow kinetic equations modified by ion-electron collisions. Magneto-acoustic waves of a period of 0.2–10 sec are dissipated by ion Landau damping and electron thermal conduction and viscosity. Numerical solutions under ionospheric conditions show that the dissipation of hydromagnetic waves is insufficient to modify the large scale heating of the ionosphere.  相似文献   

15.
Dispersion measurements were performed on geomagnetic pulsation data recorded over an Australasian network in a search for evidence of ionospheric dispersion of Pc 1 signals. A method of analysis was adopted in which the slope of emission elements of a selected Pc 1 event are examined individually. It has been found that there are no significant ionospheric dispersion effects for propagation between middle and low latitudes. Magnetospheric propagation paths calculated from dispersion measurements show large variations and are not considered generally reliable.  相似文献   

16.
Ion cyclotron waves generated in the magnetosphere by the ion cyclotron instability of protons are thought to be the origin of Pc 1–2 geomagnetic pulsations. Propagation characteristics of these waves have been measured using ATS-6 synchronous satellite magnetometer wave data. Of particular interest are the wave spectra, polarization properties, and wave diagnostics; all are characteristic of propagation in a cool ambient magnetospheric plasma containing He+ and O+ heavy ions.  相似文献   

17.
The pattern of the ionospheric electric field around the westward travelling surge (WTS) is theoretically studied. This is obtained by solving the current continuity equation at the ionospheric altitude for temporal and spatial development of the field-aligned current density modelled as the WTS phenomenon. The results show that the divergence of the ionospheric electric field is significantly changed depending on the dawn-to-dusk convection electric field E0 because of non-uniformity in the ionospheric conductivity: the ionospheric electric field diverges in the upward current region (around the head of the WTS) when a westward electric field E0 of 10 mV m−1 is uniformly applied. On the other hand, the ionospheric electric field converges without E0. From the observational inference that the ionospheric electric field converges around the head of the WTS, it is suggested that the WTS phenomenon may not be accounted for by the discharging process in the presence of the enhanced dawn-to-dusk convection electric field and non-uniform conductivity as was studied by previous authors.  相似文献   

18.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

19.
This paper presents observations of OH maser lines of W 33A for the transitions 2Π3/2, J = 3/2, F = 1 → 1 and F = 2 → 2. Two models, a thin tube and a sphere, were used for modelling the masing region and a molecular hydrogen density of about 107 cm−3 was obtained. To give a maser photon emission of the order of 1046 s−1, both models require a pump rate of 1 OH cm−3s−1, while the sphere model requires a higher pump efficiency.  相似文献   

20.
The existence of sidereal semidiurnal variation of cosmic-ray intensity in a rigidity region 102-103 GV has been reported by many researchers, but there is no consensus of opinion on its origin. In this paper, using the observed semidiurnal variations in a rigidity range (300–600 GV) with 10 directional muon telescopes at Sakashita underground station (geog. lat. = 36°, long. = 138°E, DEPTH = 80 m.w.e.), the authors determine the magnitudes (η1, η2) and directions (a1, a2) of the first- and second-order anisotropies in the following galactic cosmic-ray intensity distribution (j)
jdp = j0{1 + η1P1(cos χ1) + η2P2(cos χ2)}dp
, where Pnis the nth order spherical function and χn is the pitch angle of cosmic rays with respect to an. For the determination, the influence of cosmic-ray's heliomagnetospheric modulation, geomagnetic deflection and nuclear interaction with the terrestrial material and also of the geometric configuration of the telescopes are taken into account. Usually, the semidiurnal variation is produced by the second-order anisotropy. The present observation, however, requires also the first-order anisotropy which usually produces only the diurnal variation, but can produce also the semidiurnal variation as a result of the heliospheric modulation. The first- and second-order anisotropies are characterized with η1) > 0 and η2 < 0 have almost the same direction (a1 a2) specified by the right ascension ( 0.75 h) and declination (δ 50°S) and, therefore, they can be expressed, as a whole, by an axis-symmetric anisotropy of loss-cone type (i.e. deficit intensities in a cone). It is noteworthy that this anisotropy approximately coincides with that inferred from the air shower observation at Mt Norikura in the rigidity region 104 GV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号