首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two of the biggest drawbacks of using permeable reactive barriers (PRBs) to treat contaminated ground water are the high capital cost of installation, particularly when the contaminated ground water is deep below ground surface, and the uncertainty of whether or not PRBs remain effective for the long time scales (e.g., decades) needed for many contaminant plumes. The use of an injection-extraction treatment well pair (IETWP) for capture and treatment of contaminated ground water can circumvent these difficulties, while still providing many of the same advantages offered by PRBs. In this paper, the hydraulics of IETWPs and PRBs are compared, focusing primarily on the width of the captured plume. It is demonstrated that IETWPs act as hydraulic barriers in a manner similar to PRBs, and that IETWPs provide excellent plume capture. A mathematical expression is presented for the plume capture width of an IETWP oriented perpendicular to the ground water flow direction in a homogeneous aquifer. Also discussed are other practical considerations that might determine whether an IETWP is better suited than a PRB for a particular contaminated site; these considerations include operating and maintenance costs, and the conditions under which an IETWP system can be used for in situ remediation.  相似文献   

2.
Design Screening Tools for Passive Funnel and Gate Systems   总被引:1,自引:0,他引:1  
The funnel and gate remediation concept (Star and Cherry 1993) represents a promising, yet relatively under-developed, technology for the passive control and in situ remediation of contaminated ground water. Effective design and implementation of such a system may, however, prove difficult under conditions of large or unpredictable variations in contaminant migration or ground water flow.
Numerical modeling of two-dimensional ground water flow has been used to predict the hydraulic performance of passive, straight, or winged funnel and gate configurations over a range of hydrogeologic and ambient ground water flow conditions. The results of these analyses were used to construct generic correlation diagrams relating upstream capture zone or gale through put to the barrier, gale, and aquifer characteristics. These diagrams serve as useful screening tools to (1) quantitatively estimate the capture zone of pre-determined funnel and gale configurations, or (2) develop preliminary funnel and gale designs that will yield a desired capture zone, independent of aquifer characteristics.  相似文献   

3.
A field-scale demonstration project was conducted to evaluate the capability of eastern cottonwood trees (Populus deltoides) to attenuate trichloroethene (TCE) contamination of ground water. By the middle of the sixth growing season, trees planted where depth to water was <3 m delivered enough dissolved organic carbon to the underlying aquifer to lower dissolved oxygen concentrations, to create iron-reducing conditions along the plume centerline and sulfate-reducing or methanogenic conditions in localized areas, and to initiate in situ reductive dechlorination of TCE. Apparent biodegradation rate constants for TCE along the centerline of the plume beneath the phytoremediation system increased from 0.0002/d to 0.02/d during the first six growing seasons. The corresponding increase in natural attenuation capacity of the aquifer along the plume centerline, from 0.0004/m to 0.024/m, is associated with a potential decrease in plume-stabilization distance from 9680 to 160 m. Demonstration results provide insight into the amount of vegetation and time that may be needed to achieve cleanup objectives at the field scale.  相似文献   

4.
Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 ± 0.09 per year (half-life 2.3 ± 0.8 years) for toluene and 0.45 ± 0.06 per year (half-life 1.6 ± 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.  相似文献   

5.
Analysis of recharge-induced geochemical change in a contaminated aquifer   总被引:1,自引:0,他引:1  
Recharge events that deliver electron acceptors such as O2, NO3, SO4, and Fe3+ to anaerobic, contaminated aquifers are likely important for natural attenuation processes. However, the specific influence of recharge on (bio)geochemical processes in ground water systems is not well understood. The impact of a moderate-sized recharge event on ground water chemistry was evaluated at a shallow, sandy aquifer contaminated with waste fuels and chlorinated solvents. Multivariate statistical analyses coupled with three-dimensional visualization were used to analyze ground water chemistry data (including redox indicators, major ions, and physical parameters) to reveal associations between chemical parameters and to infer processes within the ground water plume. Factor analysis indicated that dominant chemical associations and their interpreted processes (anaerobic and aerobic microbial processes, mineral precipitation/dissolution, and temperature effects) did not change significantly after the spring recharge event of 2000. However, the relative importance of each of these processes within the plume changed. After the recharge event, the overall importance of aerobic processes increased from the fourth to the second most important factor, representing the variability within the data set. The anaerobic signatures became more complex, suggesting that zones with multiple terminal electron-accepting processes (TEAPs) likely occur in the same water mass. Three-dimensional visualization of well clusters showed that water samples with similar chemical associations occurred in distinct water masses within the aquifer. Water mass distinctions were not based on dominant TEAPs, suggesting that the recharge effects on TEAPs occurred primarily at the interface between infiltrating recharge water and the aquifer.  相似文献   

6.
The design of a pump and treat (P&T) system for the hydraulic control of a contaminated plume in a confined aquifer is presented here. Being the system designed for the emergency containment of a nonaqueous phase liquid plume, the evaluation of the system’s short-term efficiency was considered an important issue. For this reason, both time-related and ultimate capture zones were defined. They were traced using the automatic protection area (APA) model, a capture-zone delineation tool based on a hybrid forward-backward particle tracking algorithm, that provides an automatic post-processing encirclement of capture zones. Two simple indexes are here proposed for the evaluation of the performance of the hydraulic barrier, that is, the efficacy and efficiency indexes, calculated from the capture areas provided by APA. The discharge rates of the wells were dimensioned applying the APA algorithm, maximizing efficacy and efficiency of the barrier. Results proved both visually (via plotting of capture zones) and numerically (via calculation of the indexes) that the P&T system can provide a complete capture of the contaminated area and minimizes the volume of extracted water. Consequently, the APA algorithm was proved to be a useful tool in capture zone delineation. As a future perspective, it could be coupled with the real-time measurement of pumping rates and water levels and be implemented as a part of a tuning tool for the management of the hydraulic barrier.  相似文献   

7.
Delineation of regional arid karstic aquifers: an integrative data approach   总被引:1,自引:0,他引:1  
This research integrates data procedures for the delineation of regional ground water flow systems in arid karstic basins with sparse hydrogeologic data using surface topography data, geologic mapping, permeability data, chloride concentrations of ground water and precipitation, and measured discharge data. This integrative data analysis framework can be applied to evaluate arid karstic aquifer systems globally. The accurate delineation of ground water recharge areas in developing aquifer systems with sparse hydrogeologic data is essential for their effective long-term development and management. We illustrate the use of this approach in the Cuatrociénegas Basin (CCB) of Mexico. Aquifers are characterized using geographic information systems for ground water catchment delineation, an analytical model for interbasin flow evaluation, a chloride balance approach for recharge estimation, and a water budget for mapping contributing catchments over a large region. The test study area includes the CCB of Coahuila, Mexico, a UNESCO World Biosphere Reserve containing more than 500 springs that support ground water-dependent ecosystems with more than 70 endemic organisms and irrigated agriculture. We define recharge areas that contribute local and regional ground water discharge to springs and the regional flow system. Results show that the regional aquifer system follows a topographic gradient that during past pluvial periods may have linked the Río Nazas and the Río Aguanaval of the Sierra Madre Occidental to the Río Grande via the CCB and other large, currently dry, upgradient lakes.  相似文献   

8.
A zone of contaminated ground water has been identified in an unconfined sand aquifer adjacent to a pit into which spent pulp liquor was intermittently discharged from 1970 to 1979. A network of multilevel sampling, bundle-type piezometers was installed. Up to seven depthspecific sampling points were incorporated into each piezometer providing a cost-effective means for three-dimensional mapping of hydraulic head and water quality in the unconfined sand aquifer. Ground-water samples retrieved from this network showed an area of contamination 900 m long, 400 m wide, and more than 25 m deep. This plume is dispersed about the ground-water flow lines passing beneath the waste disposal pit, and it terminates at a vigorous ground-water discharge area located 800 m from the pit. The contaminated ground water is characterized by elevated concentrations of sodium (3,000 mg/1), chloride (590 mg/1), alkalinity (2,700 mg/1), total organic carbon (2,000 mg/1), chemical oxygen demand (10,800 mg/1), biological oxygen demand (2,000 mg/1), tannin and lignin (780 mg/1), and lower sulphate (1 mg/1) compared to background ground waters in the area. The apparent rate of sodium migration is more than 50 m/yr and is close to the average linear ground-water velocity. Removal of some organic matter by biological transformation has produced the increased alkalinity in the contaminated ground water and somewhat reduced pH. Tannin and lignin are relatively inert compared to other organic compounds found in the waste liquor. Extremely low sulphate levels occurring in the highly contaminated ground waters indicate the existence of conditions favorable for microbially-mediated sulphate reduction.  相似文献   

9.
Modeling was performed to simulate ground water flow through reactive barriers of lower hydraulic conductivity than the surrounding aquifer to determine the plume capture widths. As a plume approaches such a barrier, it spreads laterally. Therefore, to intercept an entire plume, the barrier must be wider than the upgradient width of the undisturbed plume. The results indicate that, for practical values of barrier thickness and plume width, hydraulic conductivities ten-fold less than that of the aquifer can be accommodated by making the width of the barrier approximately 20% greater than the upgradient width of the plume. Barrier hydraulic conductivities one-hundred-fold less than that of the aquifer may require barrier widths up to twice the width of the upgradient plume for plumes 100 feet wide (33 m) and as little as 1.1 times for plumes 1000 feet wide (325 m). The results presented here lend support to the view that novel emplacement methods that create zones of slightly lower hydraulic conductivity than the native aquifer may be viable alternatives to the excavation-and-backfill approaches which have thus far been used for installing permeable reactive barriers.  相似文献   

10.
The capture efficiency map: the capture zone under time-varying flow   总被引:3,自引:0,他引:3  
Festger AD  Walter GR 《Ground water》2002,40(6):619-628
The capture zone or contributing area of a ground water extraction well can be defined as that portion of the aquifer from which the well draws its water. Accurate delineation of capture zones is important in many ground water remediation applications and in the definition of wellhead protection areas. Their mathematical delineation is often simplified by using quasi-steady-state models based on time-weighted average pumping rates and background hydraulic gradients. We present a new semianalytic approach for the definition of capture zones under transient-flow conditions. We then use this approach to evaluate the effects of time variations in the direction of the background hydraulic gradient on capture. Results are presented in the form of capture efficiency maps (CEMs). Although the area contributing to a given well is found to generally expand relative to the steady-state average capture zone when the gradient direction varies, the zone of 100% capture may expand or contract depending on site-specific conditions. We illustrate our CEM approach by applying it to the design of a plume containment system.  相似文献   

11.
Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources.  相似文献   

12.
As competition for increasingly scarce ground water resources grows, many decision makers may come to rely upon rigorous multiobjective techniques to help identify appropriate and defensible policies, particularly when disparate stakeholder groups are involved. In this study, decision analysis was conducted on a public water supply wellfield to balance water supply needs with well vulnerability to contamination from a nearby ground water contaminant plume. With few alternative water sources, decision makers must balance the conflicting objectives of maximizing water supply volume from noncontaminated wells while minimizing their vulnerability to contamination from the plume. Artificial neural networks (ANNs) were developed with simulation data from a numerical ground water flow model developed for the study area. The ANN-derived state transition equations were embedded into a multiobjective optimization model, from which the Pareto frontier or trade-off curve between water supply and wellfield vulnerability was identified. Relative preference values and power factors were assigned to the three stakeholders, namely the company whose waste contaminated the aquifer, the community supplied by the wells, and the water utility company that owns and operates the wells. A compromise pumping policy that effectively balances the two conflicting objectives in accordance with the preferences of the three stakeholder groups was then identified using various distance-based methods.  相似文献   

13.
An assessment of aquifer storage recovery using ground water flow models   总被引:3,自引:0,他引:3  
Lowry CS  Anderson MP 《Ground water》2006,44(5):661-667
Owing to increased demands on ground water accompanied by increased drawdowns, technologies that use recharge options, such as aquifer storage recovery (ASR), are being used to optimize available water resources and reduce adverse effects of pumping. In this paper, three representative ground water flow models were created to assess the impact of hydrogeologic and operational parameters/factors on recovery efficiency of ASR systems. Flow/particle tracking and solute transport models were used to track the movement of water during injection, storage, and recovery. Results from particle tracking models consistently produced higher recovery efficiency than the solute transport models for the parameters/properties examined because the particle tracking models neglected mixing of the injected and ambient water. Mixing between injected and ambient water affected recovery efficiency. Results from this study demonstrate the interactions between hydrogeologic and operational parameters on predictions of recovery efficiency. These interactions are best simulated using coupled numerical ground water flow and transport models that include the effects of mixing of injected water and ambient ground water.  相似文献   

14.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

15.
Sea water intrusion and remediation in the Upper Floridan Aquifer in South Carolina is simulated using the finite-element model SUTRA developed by the U.S. Geological Survey. A sensitivity analysis of the effect of the hydrogeologic parameters on the sea water recharge and seepage velocities is performed. An increase in confining unit and/or in aquifer conductivity results in an increase of the sea water recharge. An increase in aquifer porosity results in a decrease of the sea water recharge. Among the three remedial techniques simulated—reduced aquifer withdrawals, an injection well, and a combined injection and capture well—the reduced aquifer withdrawals and injection well are the best methods for preventing sea water intrusion.  相似文献   

16.
Bayer P  Finkel M  Teutsch G 《Ground water》2004,42(6-7):856-867
A detailed analysis is presented of the hydraulic efficiency of plume management alternatives that combine a conventional pump-and-treat system with vertical, physical hydraulic barriers such as slurry walls or sheet piles. Various design settings are examined for their potential to reduce the pumping rate needed to obtain a complete capture of a given contaminated area. Using established modeling techniques for flow and transport, those barrier configurations (specified by location, shape, and length) that yield a maximum reduction of the pumping rate are identified assuming homogeneous aquifer conditions. Selected configurations are further analyzed concerning their hydraulic performance under heterogeneous aquifer conditions by means of a stochastic approach (Monte Carlo simulations) with aquifer transmissivity as a random space function. The results show that physical barriers are an appropriate means to decrease expected (mean) pumping rates, as well as the variance of the corresponding pumping rate distribution at any given degree of heterogeneity. The methodology presented can be transferred easily to other aquifer scenarios, provided some basic premises are fulfilled, and may serve as a basis for reducing the pumping rate in existing pump-and-treat systems.  相似文献   

17.
Multiple working hypotheses can be used to evaluate permissible alternative hydrogeological interpretations at sites with limited subsurface control. This approach was applied to test the viability of three conceptual aquifer system architecture models coupled with three hypothesized source locations for a 1,4-dioxane plume in a heterogeneous glacial aquifer system in Washtenaw County, Michigan. The three alternative conceptual models characterized the site hydrogeology with increasingly complex distributions of hydrostratigraphic units: (A) an effective aquifer, (B) a layered confined aquifer, and (C) a discretely heterogeneous aquifer model. Each was incorporated into an independently calibrated numerical ground water flow (MODFLOW) model. Steady-state and transient flow simulations of the alternative models were evaluated using both hydraulic flow field characteristics observed under natural conditions and the perturbed response after local remedial pumping activity began. Three plausible locations where 1,4-dioxane could have entered the aquifer system were identified using historical information at the site: (1) manufacturing waste water disposal lagoons, (2) a 60 foot (18 m) deep kettle lake, and (3) a shallow impoundment on a local stream. Advective transport modeling (MODPATH) was used to assess the consistency of the hypothesized source locations with observed contaminant migration pathways inferred from the mapped location of the plume. Evaluation of the nine combinations of hydrogeologic conceptualizations and 1,4-dioxane source locations led to elimination of four working hypotheses and discounting of two others, leading to reduced overall uncertainty and the development of new insights into the system behavior.  相似文献   

18.
Alight nonaqueous phase liquid (LNAPL) ground water contaminant plume has been discovered by purely geophysical means at the former Wurtsmith Air Force Base (AFB) near Oscoda, Michigan. It is located near another plume called FT-02, which is a well-studied area undergoing natural bioremediation. The plume was discovered by ground penetrating radar (GPR) profiling while extending a long line from FT-02 to establish background variability around that plume. The new plume was apparent because of a high-conductivity "shadow' or GPR reflection attenuation observed below the conductive zone at the top of the aquifer, identical to the pattern observed at the FT-02 plume. Further GPR surveys were conducted by students of a Western Michigan University geophysics field course to outline the proximal part of the plume. The GPR survey was supplemented by an electromagnetic induction (EM) survey which showed a group of four cables crossing the area. Finally, a magnetometer survey was conducted to search for any buried steel objects which might have been missed by the EM survey. The results of the three geophysical surveys were then used by students of a University of Michigan field course to guide subsurface soil and fluid sampling, which verified the presence of residual LNAPL product and ground water with conductivities 2.5 to 3.3 times above background. The plume source is in the vicinity of a vaulted underground storage tank (UST) formerly used for the collection of waste solvents and fuels for subsequent use in the fire training exercises at FT-02. This newly discovered LNAPL plume, along with other "mature' plumes, fits the electrical model which predicts conductive ground water below the decomposing but electrically resistive LNAPLs. Finally, this is a fine example of the cooperative use of a dedicated research site for training by students of two different universities.  相似文献   

19.
High-permeability layers for remediation of ground water; go wide, not deep   总被引:3,自引:0,他引:3  
A nitrate-reactive porous media layer comprising wood particles with very high hydraulic conductivity (K approximately 1 cm/s) was used to successfully treat nitrate in a shallow sand-and-gravel aquifer in southern Ontario. Nitrate concentrations of 1.3 to 14 mg/L as N in the aquifer were attenuated to <0.5 mg/L as N in the reactive layer. Borehole dilution testing indicated that ground water velocities in the reactive layer, although variable, averaged five times higher than in the surrounding aquifer, suggesting that the layer was capturing ground water flow from deeper in the aquifer. The use of high-K reactive media opens up the possibility of installing permeable reactive barriers as horizontal layers in the shallow water table zone that do not necessarily have to penetrate the full depth of a contaminant plume to be effective. Model simulations show that the depth of capture of a high-K layer increases as the layer width in the direction of flow increases. Shallower emplacement could decrease barrier costs at some sites.  相似文献   

20.
A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号