首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Popular models for the origin of gamma-ray bursts (GRBs) include short-lived massive stars as the progenitors of the fireballs. Hence the redshift distribution of GRBs should track the cosmic star formation rate of massive stars accurately. A significant proportion of high-mass star formation activity appears to occur in regions that are obscured from view in the optical waveband by interstellar dust. The amount of dust-enshrouded star formation activity taking place has been estimated by observing the thermal radiation from the dust that has been heated by young stars in the far-infrared and submillimetre wavebands. Here we discuss an alternative probe – the redshift distribution of GRBs. GRBs are detectable at the highest redshifts, and because gamma-rays are not absorbed by dust, the redshift distribution of GRBs should therefore be unaffected by dust extinction. At present the redshifts of GRBs can only be determined from the associated optical transient emission; however, useful information about the prevalence of dust-obscured star formation can also be obtained from the ratio of GRBs with and without an associated optical transient. Eight GRBs currently have spectroscopic redshifts. Once about a hundred redshifts are known, the population of GRBs will provide an important test of different models of the star formation history of the Universe.  相似文献   

2.
We construct star formation histories at redshifts z ≳ 5 for two physically distinct populations of primordial, metal-free stars, motivated by theoretical and observational arguments that have hinted towards the existence of an intermediate stellar generation between Population III and Population I/II. Taking into account the cosmological parameters as recently revised by the Wilkinson Microwave Anisotropy Probe after three years of operation, we determine self-consistent reionization histories and discuss the resulting chemical enrichment from these early stellar generations. We find that the bulk of ionizing photons and heavy elements produced at high redshifts must have originated in Population II.5 stars, which formed out of primordial gas in haloes with virial temperatures ≳104 K, and had typical masses ≳10 M. Classical Population III stars, formed in minihaloes and having masses ≳100 M, on the other hand, had only a minor impact on reionization and early metal enrichment. Specifically, we conclude that only ≃10 per cent by mass of metal-free star formation went into Population III.  相似文献   

3.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

4.
Current cold dark matter models of structure formation make a clear prediction for cosmic structures in the Dark Ages. We discuss the formation and nature of the first collapsed and first luminous objects in the universe arising in these theories. The first virialized objects are dark matter halos at the free streaming length which depends on the mass and nature of the assumed weakly interacting massive particle. The first objects that also contain significant fractions of gas have masses of the cosmological Jeans scale ∼ 104M at the redshifts of interest (z ∼ 30). The first pre-galactic objects that host stars have masses of 106 M . This mass scale is given by the requirement of a sufficiently high virial temperature to enable the chemical reactions necessary to form molecular hydrogen which subsequently allows the gas to dissipate its gravitational energy and to collapse to form a star. An individual massive star is formed per such object and explodes in a supernova within a few Myrs. All these stages of the formation of the first objects are illustrated by fully resolved three dimensional cosmological hydrodynamic simulations. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

5.
Deep surveys in many wavebands have shown that the rate at which stars were forming was at least a factor of 10 higher at redshifts >1 than today. Heavy elements ('metals') are produced by stars, and the star formation history deduced by these surveys implies that a significant fraction of all metals in the Universe today should already exist at   z ∼ 2–3  . However, only 10 per cent of the total metals expected to exist at this redshift have so far been accounted for (in damped Lyman α absorbers and the Lyman forest). In this paper, we use the results of submillimetre surveys of the local and high-redshift Universe to show that there was much more dust in galaxies in the past. We find that a large proportion of the missing metals are traced by this dust, bringing the metals implied from the star formation history and observations into agreement. We also show that the observed distribution of dust masses at high redshift can be reproduced remarkably well by a simple model for the evolution of dust in spheroids, suggesting that the descendants of the dusty galaxies found in deep submillimetre surveys are the relatively dust-free spiral bulges and ellipticals in the Universe today.  相似文献   

6.
We present estimates of the photometric redshifts, stellar masses and star formation histories of sources in the Submillimetre Common-User Bolometer Array (SCUBA) HAlf Degree Extragalactic Survey (SHADES). This paper describes the 60 SCUBA sources detected in the Lockman Hole covering an area of ∼320 arcmin2. Using photometry spanning the B band to 8 μm, we find that the average SCUBA source forms a significant fraction of its stars in an early period of star formation and that most of the remainder forms in a shorter more intense burst around the redshift it is observed. This trend does not vary significantly with source redshift. However, the sources show a clear increase in stellar mass with redshift, consistent with downsizing. In terms of spectral energy distribution types, only two out of the 51 sources we have obtained photometric redshifts for are best fitted by a quasar-like spectrum, with approximately 80 per cent of the sources being best fitted with late-type spectra (Sc, Im and starburst). By including photometry at 850 μm, we conclude that the average SCUBA source is forming stars at a rate somewhere between 6 and 30 times the rate implied from the rest-frame optical in a dust obscured burst and that this burst creates 15–65 per cent of the total stellar mass. Using a simplistic calculation, we estimate from the average star formation history that between one in five and one in 15 bright  ( L *+ 2 < L optical < L *− 1 mag)  galaxies in the field over the interval  0 < z < 3  will at some point in their lifetime experience a similar energetic dusty burst of star formation. Finally, we compute the evolution of the star formation rate density and find it peaks around   z ∼ 2  .  相似文献   

7.
It is argued that the iron nucleosynthesis rate in the universe due to SNI outbursts is dependent on the mass function of star formation. Since the mass function depends on the chemical composition and since the masses of SNI precursors have upper limits, the iron nucleosynthesis rate was low at an earlier evolutionary epoch of the universe when mainly massive stars were formed. The iron nucleosynthesis rate should reach a maximum near z ∼ 0.5. At such or similar value of z the well-known ‘step’ in the cosmic γ-ray background spectrum may be explained by the presence of γ-gray quanta accompanying the radioactive56Co →56Fe decay. An argument is presented against the identification of the hidden mass of the universe with black-hole remnants of ‘type III’ stars.  相似文献   

8.
We show that the dearth of brown dwarfs in short-period orbits around Solar-mass stars – the brown dwarf desert – can be understood as a consequence of inward migration within an evolving protoplanetary disc. Brown dwarf secondaries forming at the same time as the primary star have masses which are comparable to the initial mass of the protoplanetary disc. Subsequent disc evolution leads to inward migration, and destruction of the brown dwarf, via merger with the star. This is in contrast with massive planets, which avoid this fate by forming at a later epoch when the disc is close to being dispersed. Within this model, a brown dwarf desert arises because the mass at the hydrogen-burning limit is coincidentally comparable to the initial disc mass for a Solar mass star. Brown dwarfs should be found in close binaries around very low mass stars, around other brown dwarfs, and around Solar-type stars during the earliest phases of star formation.  相似文献   

9.
A Population III/Population II transition from massive to normal stars is predicted to occur when the metallicity of the star-forming gas crosses the critical range   Z cr= 10−5±1 Z  . To investigate the cosmic implications of such a process, we use numerical simulations which follow the evolution, metal enrichment and energy deposition of both Population II and Population III stars. We find that: (i) due to inefficient heavy element transport by outflows and slow 'genetic' transmission during hierarchical growth, large fluctuations around the average metallicity arise; as a result, Population III star formation continues down to   z = 2.5  , but at a low peak rate of  10−5 M yr−1 Mpc−3  occurring at   z ≈ 6  (about 10−4 of the Population II one); and (ii) Population III star formation proceeds in an 'inside–out' mode in which formation sites are progressively confined to the periphery of collapsed structures, where the low gas density and correspondingly long free-fall time-scales result in a very inefficient astration. These conclusions strongly encourage deep searches for pristine star formation sites at moderate  (2 < z < 5)  redshifts where metal-free stars are likely to be hidden.  相似文献   

10.
The discovery of isolated bodies of planetary mass has challenged the paradigm that planets form only as companions to stars. To determine whether 'isolated planets', brown dwarfs and stars can have a common origin, we have made deep submillimetre observations of part of the ρ Oph B star formation region. Spectroscopy of the 9-Jupiter-mass core Oph B-11 has revealed carbon monoxide line wings such as those of a protostar. Moreover, the estimated mass of outflowing gas lies on the force versus core-mass relation for protostars and protobrown dwarfs. This is evidence for a common process that can form any object between planetary and stellar masses in a molecular cloud. In a submillimetre continuum map, six compact cores in ρ Oph B were found to have masses presently below the deuterium-burning limit, extending the core mass function down to  0.01 M  with the approximate form  d N /d M ∝ M −3/2  . If these lowest-mass cores are not transient and can collapse under gravity, then isolated planets should be very common in ρ Oph in the future, as is the case in the Orion star formation region. In fact, the isolated planetary objects that may form from these cores would outnumber the massive planets that have been found as companions to stars.  相似文献   

11.
Among the dozen known magnetar candidates, there are no binary objects. Given that the fraction of binary neutron stars is estimated to be about 3–10 per cent, it is reasonable to address the question of solitarity of magnetars, to estimate theoretically the fraction of binary objects among them, and to identify the most probable companions. We present population synthesis calculations of massive binary systems. In this study, we adopt the hypothesis that magnetic field of a magnetar is generated at the protoneutron star stage due to a dynamo mechanism, so rapid rotation of the core of a progenitor star is essential. Our goal is to estimate the number of neutron stars originated from progenitors with enhanced rotation. In our calculations, the fraction of neutron stars originating from such progenitors is about 8–9 per cent. This should be considered as an upper limit to the fraction of magnetars, as some of the progenitors can lose momentum. Most of these objects are isolated due to coalescences of components prior to neutron star formation, or due to system disruption after the second supernova explosion. The fraction of such neutron stars in surviving binaries is about 1 per cent or lower. Their most numerous companions are black holes.  相似文献   

12.
The first stars in the Universe were verymassive, with masses as large as 106 M . They evolved into massive black holes (BH), which could have become the grains of the formation of supermassive BH in active galactic nuclei. If a supermassive star (SMS) rapidly rotates, it ends up as a supermassive collapsar and produces a magnetically accelerated jet. In this paper we discuss the possibility of the detection of hard X-ray bursts similar to gamma-ray bursts, which are associated with normal collapsars [1]. We demonstrate that in the process of the formation of a supecollapsar a jet may form via the Blandford-Znajek mechanism. The power of the jet may be as high as several 1051 erg/s and the total energy of the outburst may amount to 1056 erg. Due to the long time scales and large redshifts, the initial bright phase of the burstmay last for about 105 s, whereas the activity time of the central engine may be as long as 10 days. The large redshifts should make the spectrum softer compared to those of common gamma-ray bursts. The maximum of the spectral distribution should lie near 60 keV. The maximum flux is relatively small-on the order of several 10−7 erg/(cm−2 s)-but quite detectable. Such events for SMS should be rather rare: their occurence frequency must be of about 0.03/yr. Observations are to be carried out as long-term programs and will possibly be made in the future.  相似文献   

13.
We study the nature of faint blue compact galaxies (BCGs) at redshifts z ∼ 0.2 - 1.3 using Keck and HST. Despite being very luminous (LB ∼ L*), most distant BCGs have masses M ∼ 1010M, i.e., they are dwarf stellar systems. The majority of these galaxies have colors, sizes, surface brightnesses, luminosities, velocity widths, excitations, star formation rates (SFR), and mass-to-light ratios characteristic of the most luminous nearby HII galaxies. The more massive BCGs form a more heterogeneous class of evolved starburst, similar to local disk starburst galaxies. Without additional star formation, HII-like BCGs will most likely fade to resemble today's spheroidal galaxies such as NGC 205. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The character of the first galaxies at redshifts z ≳ 10 strongly depends on their level of pre-enrichment, which is in turn determined by the rate of primordial star formation prior to their assembly. In order for the first galaxies to remain metal-free, star formation in minihaloes must be highly suppressed, most likely by H2-dissociating Lyman–Werner (LW) radiation. We show that the build-up of such a strong LW background is hindered by two effects. First, the level of the LW background is self-regulated, being produced by the Population III (Pop III) star formation which it, in turn, suppresses. Secondly, the high opacity to LW photons which is built up in the relic H  ii regions left by the first stars acts to diminish the global LW background. Accounting for a self-regulated LW background, we estimate a lower limit for the rate of Pop III star formation in minihaloes at z ≳ 15. Further, we simulate the formation of a 'first galaxy' with virial temperature   T vir≳ 104 K  and total mass  ≳108 M  at z ≳ 10, and find that complete suppression of previous Pop III star formation is unlikely, with stars of  ≳100 M  (Pop III.1) and  ≳10 M  (Pop III.2) likely forming. Finally, we discuss the implications of these results for the nature of the first galaxies, which may be observed by future missions such as the James Webb Space Telescope .  相似文献   

15.
16.
Massive stars are of interest as progenitors of supernovae, i.e. neutron stars and black holes, which can be sources of gravitational waves. Recent population synthesis models can predict neutron star and gravitational wave observations but deal with a fixed supernova rate or an assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernova progenitors, i.e. with O‐ and early B‐type stars, and also all supergiants within 3 kpc. We restrict our sample to those massive stars detected both in 2MASS and observed by Hipparcos, i.e. only those stars with parallax and precise photometry. To determine the luminosities we calculated the extinctions from published multi‐colour photometry, spectral types, luminosity class, all corrected for multiplicity and recently revised Hipparcos distances. We use luminosities and temperatures to estimate the masses and ages of these stars using different models from different authors. Having estimated the luminosities of all our stars within 3 kpc, in particular for all O‐ and early B‐type stars, we have determined the median and mean luminosities for all spectral types for luminosity classes I, III, and V. Our luminosity values for supergiants deviate from earlier results: Previous work generally overestimates distances and luminosities compared to our data, this is likely due to Hipparcos parallaxes (generally more accurate and larger than previous ground‐based data) and the fact that many massive stars have recently been resolved into multiples of lower masses and luminosities. From luminosities and effective temperatures we derived masses and ages using mass tracks and isochrones from different authors. From masses and ages we estimated lifetimes and derived a lower limit for the supernova rate of ≈20 events/Myr averaged over the next 10 Myr within 600 pc from the sun. These data are then used to search for areas in the sky with higher likelihood for a supernova or gravitational wave event (like OB associations) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. If protostars are formed individually within a cluster before falling together and interacting, there should be no preferred orientation for such interactions. As star formation within clusters is believed to be coeval, it is probable that, during interactions, both protostars possess massive, extended discs.   We have used an SPH code to carry out a series of simulations of non-coplanar disc–disc interactions. We find that non-coplanar interactions trigger gravitational instabilities in the discs, which may then fragment to form new companions to the existing stars. (This is different from coplanar interactions, in which most of the new companion stars form after material in the discs has been swept up into a shock layer, and this then fragments.) The original stars may also capture each other, leading to the formation of a small- N cluster. If every star undergoes a randomly oriented disc–disc interaction, then the outcome will be the birth of many new stars and substellar objects. Approximately two-thirds of the stars will end up in multiple systems.  相似文献   

18.
We use semi-analytic techniques to study the formation and evolution of brightest cluster galaxies (BCGs). We show the extreme hierarchical nature of these objects and discuss the limitations of simple ways to capture their evolution. In a model where cooling flows are suppressed at late times by active galactic nucleus (AGN) activity, the stars of BCGs are formed very early (50 per cent at z ∼ 5, 80 per cent at z ∼ 3) and in many small galaxies. The high star formation rates in these high- z progenitors are fuelled by rapid cooling, not by merger-triggered starbursts. We find that model BCGs assemble surprisingly late: half their final mass is typically locked up in a single galaxy after   z ∼ 0.5  . Because most of the galaxies accreted on to BCGs have little gas content and red colours, late mergers do not change the apparent age of BCGs. It is this accumulation of a large number of old stellar populations – driven mainly by the merging history of the dark matter halo itself – that yields the observed homogeneity of BCG properties. In the second part of the paper, we discuss the evolution of BCGs to high redshifts, from both observational and theoretical viewpoints. We show that our model BCGs are in qualitative agreement with high- z observations. We discuss the hierarchical link between high- z BCGs and their local counterparts. We show that high- z BCGs belong to the same population as the massive end of local BCG progenitors, although they are not in general the same galaxies. Similarly, high- z BCGs end up as massive galaxies in the local Universe, although only a fraction of them are actually BCGs of massive clusters.  相似文献   

19.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

20.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号