首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event (M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event (M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event (M s 7.3) in the middle of the Michoacan gap; the Sept. 19, 1985 Michoacan mainshock (M s 8.1); and the Sept. 21, 1985 Michoacan aftershock (M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines theMoment Tensor Rate Functions; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes theMoment Tensor Rate Functions methodology in detail.The systematic bias between global and regional determinations of epicentral locations in Mexico must be resolved to enable plotting of asperities with aftershocks and geographic features. We have spatially shifted all of our results to regional determinations of epicenters. The best point source depths for the five earthquakes are all above 30 km, consistent with the idea that the down-dip edge of the seismogenic plate interface in Mexico is shallow compared to other subduction zones. Consideration of uncertainties in the focal mechanisms allows us to state that all five earthquakes occurred on fault planes with the same strike (N65°W to N70°W) and dip (15±3°), except for the smaller Playa Azul event at the down-dip edge which has a steeper dip angle of 20 to 25°. However, the Petatlan earthquake does prefer a fault plane that is rotated to a more east-west orientation—one explanation may be that this earthquake is located near the crest of the subducting Orozco fracture zone. The slip vectors of all five earthquakes are similar and generally consistent with the NUVEL-predicted Cocos-North America convergence direction of N33°E for this segment. The most important deviation is the more northerly slip direction for the Petatlan earthquake. Also, the slip vectors from the Harvard CMT solutions for large and small events in this segment prefer an overall convergence direction of about N20°E to N25°E.All five earthquakes share a common feature in the rupture process: each earthquake has a small initial precursory arrival followed by a large pulse of moment release with a distinct onset. The delay time varies from 4 s for the Playa Azul event to 8 s for the Colima event. While there is some evidence of spatial concentration of moment release for each event, our overall asperity distribution for the northern Mexico segment consists of one clear asperity, in the epicentral region of the 1973 Colima earthquake, and then a scattering of diffuse and overlapping regions of high moment release for the remainder of the segment. This character is directly displayed in the overlapping of rupture zones between the 1979 Petatlan event and the 1985 Michoacan aftershock. This character of the asperity distribution is in contrast to the widely spaced distinct asperities in the northern Japan-Kuriles Islands subduction zone, but is somewhat similar to the asperity distributions found in the central Peru and Santa Cruz Islands subduction zones. Subduction of the Orozco fracture zone may strongly affect the seismogenic character as the overlapping rupture zones are located on the crest of the subducted fracture zone. There is also a distinct change in the physiography of the upper plate that coincides with the subducting fracture zone, and the Guerrero seismic gap to the south of the Petatlan earthquake is in the wake of the Orozco fracture zone. At the northern end, the Rivera fracture zone in the subducting plate and the Colima graben in the upper plate coincide with the northernmost extent of the Colima rupture zone.  相似文献   

2.
Some comparisons between mining-induced and laboratory earthquakes   总被引:3,自引:0,他引:3  
Although laboratory stick-slip friction experiments have long been regarded as analogs to natural crustal earthquakes, the potential use of laboratory results for understanding the earthquake source mechanism has not been fully exploited because of essential difficulties in relating seismographic data to measurements made in the controlled laboratory environment. Mining-induced earthquakes, however, provide a means of calibrating the seismic data in terms of laboratory results because, in contrast to natural earthquakes, the causative forces as well as the hypocentral conditions are known. A comparison of stick-slip friction events in a large granite sample with mining-induced earthquakes in South Africa and Canada indicates both similarities and differences between the two phenomena. The physics of unstable fault slip appears to be largely the same for both types of events. For example, both laboratory and mining-induced earthquakes have very low seismic efficiencies where a is the apparent stress and is the average stress acting on the fault plane to cause slip; nearly all of the energy released by faulting is consumed in overcoming friction. In more detail, the mining-induced earthquakes differ from the laboratory events in the behavior of as a function of seismic momentM 0. Whereas for the laboratory events 0.06 independent ofM 0, depends quite strongly onM 0 for each set of induced earthquakes, with 0.06 serving, apparently, as an upper bound. It seems most likely that this observed scaling difference is due to variations in slip distribution over the fault plane. In the laboratory, a stick-slip event entails homogeneous slip over a fault of fixed area. For each set of induced earthquakes, the fault area appears to be approximately fixed but the slip is inhomogeneous due presumably to barriers (zones of no slip) distributed over the fault plane; at constant , larger events correspond to larger a as a consequence of fewer barriers to slip. If the inequality a / 0.06 has general validity, then measurements of a E a /M 0, where is the modulus of rigidity andE a is the seismically-radiated energy, can be used to infer the absolute level of deviatoric stress at the hypocenter.  相似文献   

3.
In this paper we evaluate the present state of the seismic regime in Southern California using the concentration parameter of seismogenic faults (K sf ,Sobolev andZavyalov, 1981). The purpose of this work is to identify potential sites for large earthquakes during the next five or ten years. The data for this study derived from the California Institute of Technology's catalog of southern California earthquakes, and spanned the period between 1932 to June 1982. We examined events as small asM L 1.8 but used a magnitude cutoff atM L =3.3 for a detailed analysis. The size of the target earthquakes (M M ) was chosen as 5.3 and 5.8.The algorithm for calculatingK sf used here was improved over the algorithm described bySobolev andZavyalov (1981) in that it considered the seismic history of each elementary seismoactive volume. The dimensions of the elementary seismoactive volumes were 50 km×50 km and 20 km deep. We found that the mean value ofK sf within 6 months prior to the target events was 6.1±2.0 for target events withM L 5.3 and 5.41.8 for targets withM L 5.8. Seventy-three percent of the targets withM L 5.8 occurred in areas whereK sf was less than 6.1. The variance of the time between the appearance of areas with lowK sf values and the following main shocks was quite large (from a few months to ten years) so this parameter cannot be used here for accurate predictions of occurrence time.Regions where the value ofK sf was below 6.1 at the end of our data set (June, 1982) are proposed as the sites of target earthquakes during the next five to ten years. The most dangerous area is the area east of San Bernardino whereK sf values are presently between 2.9 and 3.7 and where there has been no earthquake withM L 5.3 since 1948.  相似文献   

4.
In a previous paper (Makropoulos andBurton, 1983) the seismic risk of the circum-Pacific belt was examined using a whole process technique reduced to three representative parameters related to the physical release of strain energy, these are:M 1, the annual modal magnitude determined using the Gutenberg-Richter relationship;M 2, the magnitude equivalent to the total strain energy release rate per annum, andM 3, the upper bound magnitude equivalent to the maximum strain energy release in a region.The risk analysis is extended here using the part process statistical model of Gumbel's IIIrd asymptotic distribution of extreme values. The circum-Pacific is chosen being a complete earthquake data set, and the stability postulate on which asymptotic distributions of extremes are deduced to give similar results to those obtained from whole process or exact distributions of extremes is successfully checked. Additionally, when Gumbel III asymptotic distribution curve fitting is compared with Gumbel I using reduced chi-squared it is seen to be preferable in all cases and it also allows extensions to an upper-bounded range of magnitude occurrences. Examining the regional seismicity generates several seismic risk results, for example, the annual mode for all regions is greater thanm(1)=7.0, with the maximum being in the Japan, Kurile, Kamchatka region atm(1)=7.6. Overall, the most hazardous areas are situated in this northwestern region and also diagonally opposite in the southeastern circum-Pacific. Relationships are established between the Gumbel III parameters and quantitiesm 1(1),X 2 and , quantities notionally similar toM 1,M 2 andM 3 although is shown to be systematically larger thanM; thereby giving a physical link through strain energy release to seismic risk statistics. Inall regions of the circum-Pacific similar results are obtained forM 1,M 2 andM 3 and the notionally corresponding statistical quantitiesm 1(1),X 2 and , demonstrating that the relationships obtained are valid over a wide range of seismotectonic enviroments.  相似文献   

5.
Aftershocks or swarms indicate increase of the flow intensity in the vicinity of the initial earthquakes. By normalizing their number according to the dynamic range of the standard frequency magnitude distribution the increase or positive aftereffect property of the initial earthquakes can be compared for different magnitude intervals, periods of time or regions. After applying accurate formal algorithm of aftershock identification it is possible to study negative aftereffect of the main events (nonaftershocks) in the catalog.Negative aftereffect means decrease of the probability of successive events in a time-space vicinity of the main event, when the aftershocks are over. The negative effect is the most important part of the seismic cycle and seismic gaps approach. Global statistical test give high confidence level for the relative decrease in intensity of the flow of the events withM7 in the first 20–25 years after the events withM8 in their 1o-vicinities in the total time period under study of approximately 60 years. The decrease approximates 32% of the undisturbed intensity of the flow ofM>7 events in the vicinities.Self-similar negative aftereffect was observed 3–7 years after 6M<7 events, it totals approximately 18% of the undisturbed intensity. Another type of self-similarity of seismic regime, with respect to the negative aftereffect, is the decrease of probabilities of aftershocks with large magnitudes in aftershock sequences. When we have adequate dynamic range in the catalog for the study of this property, for example, for main events withM7 in the catalog with low cut-off limitM=4, the statistical significance of the negative aftereffect is clear. However, the absolute value of the effect is also rather small, about 10%, which means that in 90% of the cases the aftershock sequences do not experience lack of energy due to the main shock energy release and follow a standard magnitude distribution for earthquakes in the entire catalog.The small values of the negative aftereffect apparently indicate partial stress relase by earthquakes and may explain short recurrence time intervals after major earthquakes observed periodically in different places.  相似文献   

6.
Equilibrium water uptake and the sizes of atmospheric aerosol particles have for the first time been determined for high relative humidities, i.e., for humidities above 95 percent, as a function of the particles chemical composition. For that purpose a new treatment of the osmotic coefficient has been developed and experimentally confirmed. It is shown that the equilibrium water uptake and the equilibrium sizes of atmospheric aerosol particles at large relative humidities are significantly dependent on their chemical composition.List of symbols A proportionality factor - a w activity of water in a solution - c p v specific heat of water vapour at constant pressure - c w specific heat of liquid water - f relative humidity - l w specific heat of evaporation of water - M i molar mass of solute speciesi - M s mean molar mass of all the solute species in a solution - M w molar mass of water - m 0 mass of an aerosol particle in dry state - m i mass of solute speciesi - m s mass of solute - m w mass of water taken up by an aerosol particle in equilibrium state - m total molality=number of mols of solute species in 1000 g of water - m i molality of solute speciesi - m k total molality of a pure electrolytek - O(m 2) remaining terms being of the second and of higher powers ofm - p + standard pressure - p total pressure of the gas phase - p pressure within a droplet - p 1,p 2,p 3 coefficients in the expansion of M - p 1i, p2i, p3i specific parameters of ioni - p s saturation vapour pressure - p w water vapour pressure - R w individual gas constant of water - r radius of a droplet - r 0 equivalent volume radius of an aerosol particle in dry state - T temperature - T 0 standard temperature - T 1 temperature of the pure water drop in the osmometer - v w specific volume of pure water - z i valence of ioni - i relativenumber concentration of ioni in a solution - correction term due to the adsorption of ions at liquid-solid interfaces - activity coefficient of solute speciesi in a solution, related to molalities - I bridge current - T temperature difference between solution and pure water drop in the osmometer - exponential mass increase coefficient - w specific chemical potential of water vapour - w specific chemical potential of water - 0 w specific chemical potential of pure water vapour - 0 w specific chemical potential of pure water - 0 density of an aerosol particle in dry state - w density of pure water - surface tension of a droplet - 0 surface tension of pure water, i.e., at infinite dilution of the solute - osmotic coefficient - k osmotic coefficient of a solution of a pure electrolytek - k osmotic coefficient of a solution of a mixed solute - M fugacity coefficient of water vapour - s i=1 i z 2 i This work is part of a Ph.D. thesis carried out at the Meteorological Institute of the Johannes Gutenberg-Universität, Mainz.  相似文献   

7.
From the events synthesized from the one-dimensional dynamical mass-spring model proposed byBurridge andKnopoff (1967), the relation between rupture length and earthquake momentM is studied for various model parameters. The earthquake moment is defined to be the total displacement of a connected set of mass elements which slide during an event. A parameter stiffness ratios is defined as the ratio of the spring constant between the two mass elements to that between one mass element and the moving plate. The velocity-dependent friction law (including weakening and hardening processes) is taken to control the sliding of a mass element. The distribution of the breaking strengths over the system is considered to be a fractal function. The cases for severals values and different velocity-dependent friction laws with different decreasing ratesr w of the frictional force with sliding velocity are studied numerically. The weakening process of the frictional force from the static one to the dynamic one obviously affects theM– relation. Meanwhile, a rapid weakening process rather than a slow weakening process can result in aM– relation, which is comparable to the observed one. Although an increase in thes value can yield an increase in the upper bound of the value and the number of events with largeM and values, the scaling of theM– relation is not affected by the change of thes value. For the cases in this study, the theoretical –M relations for small events withM<1 are almost in the form: M 1/2, while those for large events withM>1 have a scaling exponent less than but close to 1. In addition, the fractal dimension, the friction drop ratio and the roughness of the distribution of the breaking strengths over the fault surface are the minor parameters influencing the –M relation. A comparison between the theoreticalM– relation and the observed one for strike-slip earthquakes shows that for large events the theoreticalM– relation is quite consistent with the observed one, while for small events there is a one-order difference in the two relations. For the one-dimensional model, the decreasing rate of the dynamic frictional force with velocity is the main factor in affecting the characteristic value of the earthquake moment, at which the scaling of theM– relation changes.  相似文献   

8.
Source parameter estimates based on the homogeneous and inhomogeneous source models have been examined for an anomalous sequence of seven mine-induced events located between 640 and 825 m depth at Strathcona mine, Ontario, and having magnitudes ranging betweenm N 0.8 and 2.7. The derived Brune static stress drops were found to be similar to those observed for natural earthquakes (30 bars), whereas dynamic stress drops were found to range up to 250–300 bars. Source radii derived from Madariaga's model better fit documented evidence of underground damage. These values of source radii were similar to those observed for the inhomogeneous model. The displacement at the source, based on the observed attenuation relationship, was about 60 mm for three magnitude 2.7 events. This is in agreement with slip values calculated using peak velocities and assuming the asperity as a Brune source within itself (72 mm). By using Madariaga's model for the asperity, the slip was over 3 times larger than observed. Peak velocity and acceleration scaling relations with magnitude were investigated by incorporating available South African data, appropriately reduced to Canadian geophysical conditions. The dynamic stress drop scaled as the square root of the seismic moment, similar to reported results in the literature for crustal earthquakes. This behavior suggests that the size of the asperities responsible for the peak ground motion, with respect to the overall source size, follow distributions that may be similar over a wide range of magnitudes. Measurements of source rupture complexity (ranging from 2 to 4) were found to agree with estimates of overall source to asperity radii, suggesting, together with the observed low rupture velocities (0.3 to 0.6 ), that the sources were somewhat complex. Validation of source model appropriateness was achieved by direct comparison of the predicted ground motion level to observed underground damage in Creighton mine, located within the same regional stress and geological regime as Strathcona mine. Close to the source (<100 m), corresponding to relatively higher damage levels, a good agreement was found between the predicted peak particle velocities for the inhomogeneous model and velocities derived based on established geomechanical relationships. The similarity between asperity radii and the regions of the highest observed damage provided additional support for the use of the inhomogeneous source model in the assessment of damage potential.  相似文献   

9.
Barriers and asperities along the Japan trench east of Tohoku (north-eastern Honshu) are outlined by investigating the distribution of source areas of earthquakes withM6 in the time period 1926 to 1981. The earthquakes were grouped into three magnitude ranges: A: 6.0M6.4, B: 6.5M7.0 and C: 7.1M8.1.The following feature is found to be common to all three groups: Either the source areas do not substantially overlap, or they superpose almost perfectly. Only a very small number of events show partial overlapping of source areas. The events of group A tend to align along several NW-SE oriented zones with distinct interspaces. These zones do not follow the regional stress field but show excellent correlation with the direction perpendicular to the magnetic anomaly lineations of the ocean floor in this area. The events of group B and C generally fill in the spatial gaps of group A. In terms of the barrier model this can be explained by barriers of varying strength through which the fracture process of smaller magnitude events does not propagate and that of larger events is not inhibited. The direction of the group A barriers suggests that they have been developed at the time of creation of the oceanic lithosphere and possibly relate to ancient transform faults now buried by sediments. Since the accuracy of epicenter locations is crucial for this kind of investigation, 45 events between 1963 and 1979 have been relocated by the joint epicenter determination method.Contribution No. 456, Institut fur Geophysik, ETHZ.  相似文献   

10.
A sequence of moderate shallow earthquakes (3.5M L5.3) was located within the Vercors massif (France) in the period 1961–1984. This subalpine massif has been a low seismic area for at least 5 centuries. During the period 1962–1963, 12 shallow earthquakes occurred in the neighborhood (10 km) of the Monteynard reservoir, 30 km south of the city of Grenoble. The latest fourM L4.0 earthquakes occurred in 1979–1984 either at larger distance (35 km) or greater depth (10 km) from the reservoir. Two triggering mechanisms are suggested for this sequence: (i) the direct effect of elastic loading through either increased shear stress or strength reducing by increased pore pressure at depth; (ii) the pore pressure diffusion induced by poroelastic stress change due to the reservoir filling.The weekly water levels, local balanced geological cross sections, and focal mechanisms argue for two types of mechanical connection between the earthquake sequence and the filling cycles of the Monteynard reservoir. The seismic sequence started with the 1962–1963 shallow earthquakes that occurred during the first filling of the reservoir and are typical of the direct effect of elastic loading. The 1979 deeper earthquake is located at a 10 km depth below the reservoir. This event occurred 16 years after the initial reservoir impoundment, but one month after the previous 1963 maximum water level was exceeded. Moreover the yearly reservoir level increased gradually in the period 1962–1979 and has decreased since 1980. Accordingly we suggest that the gradual diffusion of water from reservoir to hypocentral depths decreases the strength of the rock matrices through increased pore pressure. The transition between the two types of seismic response is supported by the analysis ofM L3.5 earthquakes which all occurred in the period 1964–1971, ranging between 10 and 30 km distance from the reservoir. The three other delayed earthquakes of the 1961–1984 seismic sequence (M L4 during the 1979–1984 period) are all located 35 km away from the reservoir. Based on the seismic activity, the estimates for the hydraulic diffusivities range between 0.2–10 m2/s, except for the first event that occurred 30 km north of the reservoir, the filling just started. The lack ofin situ measurements of crustal hydrological properties in the area, shared by most of the Reservoir-Induced-Seismicity cases, prevents us from obtaining absolute evidence for the triggering processes. These observations and conceptual models attest that previous recurrence times for moderate natural shocks (4.5M L5.5) estimated within this area using historical data, could be modified by 0.1–1 MPa stress changes. These small changes in deviatoric stress suggest that the upper crust is in this area nearly everywhere at a state of stress near failure. Although the paucity of both number and size of earthquakes in the French subalpine massif shows that aseismic displacements prevail, our study demonstrates that triggered earthquakes are important tools for assessing local seismic risk through mapping fault zones and identifying their possible seismic behavior.  相似文献   

11.
A data set of nineteen, mainly shallow, moderate to large earthquakes, which occurred in the Aegean and the surrounding area, has been used to derive empirical relations for kinematic fault parameters. Thus the relations between seismic momentM 0 and magnitudeM s andm b and betweenM 0 andM s and fault dimensionsS andL have been determined. From these relations and theoretical ones it was deduced that earthquakes in the Aegean and the surrounding events, chiefly interplate, are characterized by low average stress drop values. Values of ranging from 1 to 30 bar are consistent with the data. It was also found that, in general terms, most of the data obey the geometrical similarity conditionL=2w, whereL is the fault length measured along the strike andw is its width measured along the dip. For strike-slip faults, however, the conditionL=4w seems to hold.  相似文献   

12.
13.
A re-assessment of the historic seismicity of the central sector of the Colombian Eastern Cordillera (EC) is made by revision of bibliographic sources, by calibration with modern instrumental earthquakes, and by interpretations in terms of current knowledge of the tectonics and seismicity of the region. Throughout the process we have derived an equation to estimate Mw for shallow crustal earthquakes in Colombia using the length of isoseismal VIII, LVIII:
We also derived an equation to evaluate Mw for Colombian crustal earthquakes using the rupture length, L, estimated generally from the aftershock distribution of strong earthquakes:
We calculated average attenuation parameters for intermediate depth and shallow earthquakes that may be used, combined with other observations, to estimate the focal depth of historical events. Our final picture shows three distinct regions of the Colombian Eastern Cordillera (EC) where historical earthquakes are distributed. (a) The southern sector, from the Páramo de Sumapaz down to the Colombian Massif where the largest crustal earthquakes have occurred (1827, M 7 3/4; 1967, Mw = 7.0). (b) The central sector, between the Páramo de Sumapaz and Tunja with moderate to large earthquakes associated to the reverse faults on the piedmonts (the 1805 earthquake, M 6 3/4, on the western flank, and the 1743, 1923 and 1995 with M 6 1/2, 6 3/4, and 6.5, respectively, on the eastern flank). (c) The northern sector, to the north of Tunja, which is characterized by recurrent earthquakes probably associated with major reverse faults in the axial zone (e.g., 1646, I0 = VIII; 1724, M 6 3/4; 1755, I0 VIII; and 1928, M 5 3/4). Two events appear to be related to the axial faults to the south of Bogotá: those in 1644 (M 6) and 1917 (M = 7.1). The 1785 earthquake might have been an intraplate event in the subducting plate under the EC. Events in 1616 and 1826, which caused damage along the axial zone of the Cordillera near Bogotá, have no historical records precise enough to allow the estimation of their location and size, but their epicentres are probably not farther than some tens of kilometers from Bogotá.  相似文献   

14.
Summary The derivatives of the harmonicsP n (k) (sin O)cos kTO andP n (k) (sin O)sin kTO, occurring in the development of the lunar disturbing potential, are derived upto n=4 and for k== 0, 1, ..., n. The equatorial co-ordinates OTO are referred to the Moon's mass centre; the procedure for the solar disturbing potential is formally identical.  相似文献   

15.
This paper describes a new method, single-link cluster analysis (SLC), to evaluate percursory quiescence for shallow earthquakes in sixteen subduction zones, using data from the ISC catalog. To define quiescent regions, we divided the catalog into time intervals with a durationT, overlapping byT/2. We considered all earthquakes having magnitudes larger than some magnitudeM min, lying within a specified distance of a great circle which is approximately coincident with the trench near a subduction zone. Within each time interval we connected or linked all earthquakes lying within some cutoff distanced of one another. We then projected all these links onto the great circle, and defined a region to be quiescent if it was not covered by the projection of any links. For this study,T was two years,M min wasm b =4.9, and we variedd from 100 to 400 km. We defined an earthquake as following quiescence if it occurred within two years following, and within 75 km of a quiescent zone as defined above. The primary conclusion of this study was that earthquakes with surface wave magnitudes 7.2 and greater were about 5–15% more likely to follow quiescence than were the smaller background earthquakes withm b >-4.9. A chi-squared analysis shows that this result is significant at the 99% level. In contrast, earthquakes with surface wave magnitude of 6.7 to 7.1 were no more likely to follow quiescence than were background earthquakes. Of sixteen individual regions, Central America, Japan, and Peru-Chile were the only regions where large earthquakes were more likely to occur following quiescence than were background earthquakes. For a cutoff link length of 300 km, only in Central America was the difference between large earthquakes and background earthquakes significant at the 95% level of significance. For a cutoff link length of 250 km, the significance level exceeded 95% only in Japan. The SLC method is an objective, quantitative method for evaluating large data catalogs, or for monitoring quiescence in regions where quiescence is conjectured to precede large earthquakes.  相似文献   

16.
The statistical technique known as analysis of variance is applied to a large set of European strong-motion data to investigate whether strong ground motions show a regional dependence. This question is important when selecting strong-motion records for the derivation of ground motion prediction equations and also when choosing strong-motion records from one geographical region for design purposes in another. Five regions with much strong-motion data (the Caucasus region, central Italy, Friuli, Greece and south Iceland) are investigated here. For the magnitude and distance range where there are overlapping data from the five areas (2.50 Ms 5.50, 0 d 35 km) and consequently analysis of variance can be performed, there is little evidence for a regional dependence of ground motions. There is a lack of data from moderate and large magnitude earthquakes (Ms > 5.5) so analysis of variance cannot be performed there. Since there is uncertainty regarding scaling ground motions from small to large magnitudes whether ground motions from large earthquakes are significantly different in different parts of Europe is not known. Analysis of variance has the ability to complement other techniques for the assessment of regional dependence of ground motions.  相似文献   

17.
The spatio-temporal variation of seismicity in the southern Peru and northern Chile seismic gaps is analyzed with teleseismic data (m b 5.5) between 1965 and 1991, to investigate whether these gaps present the precursory combination of compressional outer-rise and tensional downdip events observed in other subduction zones. In the outer-rise and the inner-trench (0 to 100 km distance from the trench) region, lower magnitude (5.0m b <5.5) events were also studied. The results obtained show that the gaps in southern Peru and northern Chile do not present compressional outer-rise events. However, both gaps show a continuous, tensional downdip seismicity. For both regions, the change from compressional to tensional regime along the slab occurs at a distance of about 160 km from the trench, apparently associated with the coupled-uncoupled transition of the interplate contact zone. In southern Peru, an increase of compressional seismicity near the interplate zone and of tensional events (5.0m b 6.3) in the outer-rise and inner-trench regions is observed between 1987 and 1991. A similar distribution of seismicity in the outer-rise and inner-trench regions is observed with earthquakes (m b <5.5). In northern Chile there is a relative absence of compressional activity (m b 5.5) near the interplate contact since the sequence of December 21, 1967. After that, only a cluster of low-magnitude compressional events has been located in the area 50 to 100 km from the trench. The compressional activity occurring near the interplate zone in both seismic gaps represents that a seismic preslip is occurring in and near the plate contact. Therefore, if this seismic preslip is associated with the maturity of the gap, the fact that it is larger in southern Peru than in northern Chile may reflect that the former gap is more mature than the latter. However, the more intense downdip tensional activity and the absence of compressional seismicity near the contact zone observed in northern Chile, may also be interpreted as evidence that northern Chile is seismically more mature than southern Peru. Therefore, the observed differences in the distribution of stresses and seismicity analyzed under simple models of stress accumulation and transfer in coupled subduction zones are not sufficient to assess the degree of maturity of a seismic gap.  相似文献   

18.
Teleseismic observations of explosions tend to be richer in short-period energy than are earthquakes, thus the effectiveness of them b M s discriminant. At regional distances the same basic separation occurs for smaller events in terms ofM L M 0 (Woods et al., 1993) andm b M 0 (Patton andWalter, 1993). While these studies demonstrate the basic differences in excitation, they suffer in practical application because of the detailed information required in the retrieval ofM 0 . In this paper, we introduce a new method of discrimination, based on the energy strength (M E ) from broadband regional records that appears to be effective and efficient. In this method all events are processed as earthquakes, and explosions are distinguished by their stronger energy levels relative to their long-period amplitudes. Results from 29 events recorded by TERRAscope, sampling 15 explosions from NTS and 14 earthquakes from the southwestern United States, are represented, indicating complete separation (45 data points).M L =3.6 is the smallest event examined to date but the method can probably be extended to even smaller levels in calibrated regions.  相似文献   

19.
The time clustering of earthquakes occurring in the Hellenic arc-trench system is quantitatively analyzed by means of the fractal dimension,D, of their time distribution in the time intervals of 1950–1985 (M s >-4.5) and 1964–1985 (M s 4.0). The results obtained imply that scale-invariant clustering holds over very large scale lengths of time,T, with 22–28T (in min) 220–222, depending on the seismotectonic segment considered. In all segments a common feature is the relation between theD 1,D 2 andD 3-values found for shallow, intermediate-depth and all-depth shocks, respectively:D 3>D1>D2. TheD-values found for shallow shocks range between 0.137 and 0.191 with the exception of the Ionian Islands and Cretan segments where anomalously high values (D=0.221–0.251) have been determined. We discuss possible seismotectonic interpretations of the results.  相似文献   

20.
Summary The influence of the velocity of the movement of the centre of the cycloneV c.c. on the rate of amplitudes' change A/t and periods' change T/t of storm microseisms is investigated. The dependence A/t=k V c.c. and T/t=k 1 V c.c. is obtained. Unmovable depression (V c.c. =0) does not stipulate the change of A/t and T/t.
u V c.c. A/t T/t . A/t=k V c.c. T/t=1 V c.c. . (V c.c. =0) A/t T/t.


Presented as a scientific communication to the IASPEI Assembly in Madrid, Sept. 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号