首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 µg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 µg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 µg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 µg/L over a 20-year period.  相似文献   

2.
Abstract

Preferential flow pathways in a fractured aquifer may yield abrupt reductions of the water velocity in a well. We propose a new device for measuring low (5–13 cm d-1) velocities in wells originating from fractures at different depths. The presented flowmeter has been applied in a well in the Bari (southern Italy) fractured aquifer. In the same well, the horizontal flowmeter velocity (9.6 cm d-1) at 0.5 m depth was compared with velocity (8 cm d-1) derived from a field tracer test, providing a value 16.5% higher. Moreover, the flowmeter measurements at 1.5 m depth gave a horizontal velocity of 7.2 cm d-1, which is 11% less than water flow velocity estimated from the field test. The new flowmeter implements the tracer point-dilution method in a plastic (PVC) pipe by causing the water flow to pass through an artificial filter. Laboratory calibration tests have confirmed the good performance of the proposed flowmeter technique, even for water flow up to 300 cm d-1. The flowmeter was sensitive to 0.1 cm d-1, with a detection limit of 1.5 cm d-1, i.e. half the measurable flow velocity of existing flowmeters in wells.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   

3.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

4.
Characterization of a multilayer aquifer using open well dilution tests   总被引:1,自引:0,他引:1  
West LJ  Odling NE 《Ground water》2007,45(1):74-84
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.  相似文献   

5.
Purge and pump samples from screened wells reflect concentration averaging and contaminant redistribution by wellbore flow. These issues were assessed in a screened well at the Hanford Site by investigating the vertical profile of a technetium-99 plume in a conventional well under static and pumped conditions. Specific conductance and technetium-99 concentrations were well correlated, and this enabled measurement of specific conductance to be used as a surrogate for technetium-99 concentration. Time-series measurements were collected during purging from three specific conductance probes installed in the well at 1.2, 3.1, and 4.9 m below the static water level in a 7.7-m-deep screened well. The vertical contaminant profile adjacent to the well in the aquifer was calculated using the concentration profile in the well during pumping, the pumping flow rate, and a wellbore flow and mixing model. The plume was found to be stratified in the aquifer—the highest concentrations occurred adjacent to the upper part of the screened interval. The purge and pump sample concentrations were 41% to 58% of the calculated peak concentration in the aquifer. Plume stratification in the aquifer adjacent to the well screen became more pronounced as pumping continued. Extended pumping may have partially reversed the effect of contaminant redistribution in the aquifer by wellbore flow and allowed the stratification of the plume to be more observable. It was also found that the vertical profile of contamination in the well under static (i.e., nonpumping conditions) was not representative of the profile in the aquifer. Thus, passive or micropurge sampling techniques, which sample the wellbore water at different depths, would not yield results representative of the aquifer in this well.  相似文献   

6.
Reverse water‐level fluctuations (RWFs), a phenomenon in which water levels rise briefly in response to pumping, were detected in monitoring wells in a fractured siliciclastic aquifer system near a deep public supply well. The magnitude and timing of RWFs provide important information that can help interpret aquifer hydraulics near pumping wells. A RWF in a well is normally attributed to poroelastic coupling between the solid and fluid components in an aquifer system. In addition to revealing classical pumping‐induced poroelastic RWFs, data from pressure transducers located at varying depths and distances from the public supply well suggest that the RWFs propagate rapidly through fractures to influence wells hundreds of meters from the pumping well. The rate and cycling frequency of pumping is an important factor in the magnitude of RWFs. The pattern of RWF propagation can be used to better define fracture connectivity in an aquifer system. Rapid, cyclic head changes due to RWFs may also serve as a mechanism for contaminant transport.  相似文献   

7.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

8.
An area of about 30 km2 located in Ain Jouhra, south of Rabat, Morocco, was the subject of a geoelectric resistivity investigation. The main goal of the investigation was the assessment of the groundwater potential of the uppermost aquifer. The aquifer conditions such as depth, thickness and boundaries were also investigated. The obtained apparent resistivity curves were first analysed qualitatively and classified using simple curve shapes. Thereafter, the data were converted to resistivity and thickness pairs semi‐quantitatively by means of master curves and then quantitatively by computer modelling using ATO and Winsev software (Zohdy, 1989; Zohdy and Bisdrof, 1989). Lithological control from the available single well with a stratigraphic log aided in the correlation of the resistivity values to different rock units. Three different AB‐spacing iso‐resistivity maps, an isopach map of the main groundwater‐bearing horizon, the depth to the aquifer substratum map and five geoelectric cross‐sections were constructed. The interpretation of these soundings indicates the presence of an unconfined to semi‐confined sandy aquifer with relatively important extent and varying thickness. The maximal thickness of the aquifer is recorded in the central part of the investigated area and is thinning southwards to pinch out farther to the south. Geophysical as well as field data indicate a hydraulic connection between the upper and deeper aquifers. Indeed, the two aquifers are separated from each other by a marly substratum that is indicated throughout the area by the lowest values of the interpreted true resistivity. The value of this resistivity varies laterally, most likely due to the lateral variation in the shale‐to‐sand ratio. The altitude of the substratum decreases towards the north, and increases southwards. Regarding the availability of the groundwater in the study area, zones with high potential are theoretically expected to occur in the central part where the transversal resistance is greatest. However, sufficient water supply and high flow rates from wells intended to produce restrictively from the most upper aquifer are not likely to exist. This conclusion, which seems to be very pessimistic, is evidenced from two real field and experimental observations. The first is the rapid fall of the level of Gharnoug lake, despite the ongoing feeding by three wells. Hence, the amount of water level drop cannot be accounted for by the evaporation alone. That means that the deeper aquifer is continuously draining the upper aquifer at a high flow rate. Very low rates are recorded in all the wells that penetrated only the upper aquifer, the exception being the well that reached deeper into the lower aquifer. The flow rate in this lower aquifer measured 18 litre s?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
It is increasingly common for the electromagnetic borehole flowmeter (EBF) to he used to measure hydraulic conductivity (K) distributions in subsurface flow systems. Past applications involving the EBF have been made mostly in confined aquifers (Kabala 1994; Boman et al. 1997; Podgorney and Ritzi 1997; Ruud and Kabala 1997a, 1997b; Flach et al. 2000), and it has been common to set up a flow field around a test well using a small pump that is located near the top of the well screen (Mob, and Young 1993). In thin, unconfined aquifers that exhibit ground water tables near the ground surface and that undergo drawdown during pumping, such a configuration can be problematical because pumping and associated drawdown may effectively isolate the upper portion of the aquifer from the flowmeter. In these instances, a steady-state flow field in the vicinity of the test well may be created using injection rather than pumping, allowing for testing in the otherwise isolated upper portion of the aquifer located near the initial water table position. Using procedures developed by Molz and Young (1993), which were modified for an injection mode application, testing was conducted to determine whether or not the injection mode would provide useful information in a shallow, unconfined aquifer that required the collection of data near the initial water table position. Results indicated that the injection mode for the EBF was well suited for this objective.  相似文献   

10.
The Kuwait Group consists mainly of clastic sediments overlying unconformably the Dammam Formation of Tertiary age. The Kuwait Group is generally divided into three main hydrostratigraphic units: the upper and lower aquifers separated by an aquitard. The upper aquifer is further divided into the water table aquifer, an aquitard and a semiconfined aquifer. This semiconfined unit was pumped and the drawdowns were observed in piezometers screened in various subunits of the Kuwait Group. Some pumping tests of short duration were carried out in the top water table aquifer as well. These tests showed that the subunits of the Kuwait Group are hydraulically interconnected to a varying degree.

The pumping test data were analysed using conventional analytical solutions. The semiconfined pumping test was also simulated by a quasi-three-dimensional model using a leaky multiaquifer modelling technique. The initial hydraulic parameters were improved manually in the model till best fit drawdowns were obtained.

The final parameters obtained by simulation of the pumping tests were used in designing a pilot drainage system for the control of a rising groundwater table in parts of Kuwait City.  相似文献   


11.
Numerical hydrogeological models should ideally be based on the spatial distribution of hydraulic conductivity (K), a property rarely defined on the basis of sufficient data due to the lack of efficient characterization methods. Electromagnetic borehole flowmeter measurements during pumping in uncased wells can effectively provide a continuous vertical distribution of K in consolidated rocks. However, relatively few studies have used the flowmeter in screened wells penetrating unconsolidated aquifers, and tests conducted in gravel-packed wells have shown that flowmeter data may yield misleading results. This paper describes the practical application of flowmeter profiles in direct-push wells to measure K and delineate hydrofacies in heterogeneous unconsolidated aquifers having low-to-moderate K (10(-6) to 10(-4) m/s). The effect of direct-push well installation on K measurements in unconsolidated deposits is first assessed based on the previous work indicating that such installations minimize disturbance to the aquifer fabric. The installation and development of long-screen wells are then used in a case study validating K profiles from flowmeter tests at high-resolution intervals (15 cm) with K profiles derived from multilevel slug tests between packers at identical intervals. For 119 intervals tested in five different wells, the difference in log K values obtained from the two methods is consistently below 10%. Finally, a graphical approach to the interpretation of flowmeter profiles is proposed to delineate intervals corresponding to distinct hydrofacies, thus providing a method whereby both the scale and magnitude of K contrasts in heterogeneous unconsolidated aquifers may be represented.  相似文献   

12.
Lowbush blueberries, native to eastern Canada and Maine, are an important economic crop in these areas. Herbicides containing the active ingredient hexazinone are commonly applied to blueberry fields, and there is a high frequency of detection of relatively low concentrations of hexazinone in domestic wells located close to areas of lowbush blueberry production. The objective of this study was to determine the long-term impacts from hexazinone-based herbicide use on ground water quality in the immediate growing areas.
Physical and chemical hydrogeologic data were collected for an outwash sand and gravel aquifer in southwestern New Brunswick, Canada. The majority of the land overlying the aquifer is devoted to lowbush blueberry production. Twenty-one nested monitoring wells were sampled for hexazinone and hexazinone metabolites over a four-year period. Hexazinone was consistently detected at values of 1 to 8 parts per billion (ppb) in all but two of these wells, one that is upgradient of herbicide applications, and one that is downgradient with anoxic conditions. Hexazinone metabolites B and A1 were also detected in all but two of the 21 wells at values ranging from 0.5 to 2.5 ppb. The hexazinone and metabolite data suggest both aerobic and anaerobic degradation of hexazinone. Complete degradation of hexazinone appears to occur only in the one downgradient well exhibiting anoxic ground water conditions. Concentrations of hexazinone and its metabolites in the ground water were essentially constant over the four-year period.  相似文献   

13.
中国大陆井水温度潮汐动态的统计与调和分析   总被引:1,自引:0,他引:1  
马玉川 《地震》2014,34(2):55-64
用收集到的全国356个井水温度测点的数据, 分析了水温对地球固体潮汐的响应, 统计出 35个存在水温潮汐现象的测点。 利用Baytap-G调和分析方法, 计算了水温潮汐分波的振幅、 振幅比和相位差。 结果表明: 水温潮汐现象是一类较普遍的地球物理现象, 其机制与水位潮汐相关, 可用水动力学模式解释; 水温潮汐变化特征还受太阳辐射热、 含水层和地温的影响, 自流井水温记录潮汐现象的能力高于非自流井、 东部地区水温测点记录潮汐现象的能力高于西部, 与太阳辐射热的影响有关, 在含水层附近的水温测点, 其潮汐动态比其他井段显著, 在受地温影响较大的井段, 水温的潮汐变化幅度与水温梯度成正比; 水温的应力-应变灵敏度量级为0.01~10℃/10-6m·s-2。  相似文献   

14.
In a recent field study, the performance of four production wells was evaluated. The intake of a vertical turbine test pump was set below the top of the screened interval of the wells due to anticipated drawdown. Water level sounding tubes were welded to the well casing at various depths in each well. Drawdown data collected at various depths were used to evaluate the vertical head distribution in the wells under various pumping stresses. A direct relationship was observed between the head loss and the location of the pump intake in the production wells. A vertical head profile developed, suggesting that the location of the pump intake controlled the location of water production from the aquifer. The head loss in the wells observed during pumping was directly proportional to well discharge and annulus size between the well casing and the vertical turbine pump shaft. The pressure differences that developed in the wells created increased drawdown in water level sounding tubes installed deep in the wells compared to the total drawdown observed in the production wells. Certain implications should be considered based on the evaluation of the data obtained from this study. Because water management decisions are made using well test data, the quality of the data is crucial. In instances where well performance is evaluated using water level data collected from water level sounding tubes that are located close to a pump intake (in this case deep in the well), it should be recognized that well performance could be underestimated.  相似文献   

15.
Domestic Well Capture Zone and Influence of the Gravel Pack Length   总被引:1,自引:0,他引:1  
Domestic wells in North America and elsewhere are typically constructed at relatively shallow depths and with the sand or gravel pack extending far above the intake screen of the well (shallow well seal). The source areas of these domestic wells and the effect of an extended gravel pack on the source area are typically unknown, and few resources exist for estimating these. In this article, we use detailed, high-resolution ground water modeling to estimate the capture zone (source area) of a typical domestic well located in an alluvial aquifer. Results for a wide range of aquifer and gravel pack hydraulic conductivities are compared to a simple analytical model. Correction factors for the analytical model are computed based on statistical regression of the numerical results against the analytical model. This tool can be applied to estimate the source area of a domestic well for a wide range of conditions. We show that an extended gravel pack above the well screen may contribute significantly to the overall inflow to a domestic well, especially in less permeable aquifers, where that contribution may range from 20% to 50% and that an extended gravel pack may lead to a significantly elongated capture zone, in some instances, nearly doubling the length of the capture zone. Extending the gravel pack much above the intake screen therefore significantly increases the vulnerability of the water source.  相似文献   

16.
Ground water quality networks for monitoring phreatic drinking water wellfields are generally established for two main purposes: (1) the short-term safeguarding of public water supply and (2) signaling and predicting future quality changes in the extracted ground water. Six monitoring configurations with different well locations and different screen depths and lengths were evaluated using a numerical model of the 3D ground water flow toward a partially penetrating pumping well in a phreatic aquifer. Travel times and breakthrough curves for observation and pumping wells were used to judge the effectiveness of different design configurations for three monitoring objectives: (1) early warning; (2) prediction of future quality changes; and (3) evaluation of protection measures inside a protection zone. Effectiveness was tested for scenarios with advective transport, first-order degradation, and linear sorption. It is shown that the location and especially the depth of the observation wells should be carefully chosen, taking into account the residence time from the surface to the observation well, the residual transit times to the extraction well, and the transformation and retardation rates. Shallow monitoring was most functional for a variety of objectives and conditions. The larger the degradation rates or retardation, the shallower should the monitoring be for effective early warning and prediction of future ground water quality. The general approach followed in the current study is applicable for many geohydrological situations, tuning specific monitoring objectives with residence times and residual transit times obtained from a site-specific ground water flow model.  相似文献   

17.
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.  相似文献   

18.
Hole stability problems occurring during construction of monitoring wells in coarse, unconsolidated alluvium can be overcome by using a drill-through casing driver mounted on a standard top-head drive rotary rig. Steel casing is driven contemporaneously with drilling, providing continuous hole stability. Samples of aquifer material and ground water can be taken at discrete depths as drilling proceeds. Monitoring well completion is accomplished by: (1) using the steel casing as an open-ended piezometer; (2) installing a telescoping well screen; (3) plugging the casing end and perforating desired intervals, (4) installing one or more smaller diameter wells, and then (5) pulling back the steel casing. Advantages of this drilling method include maintenance of hole stability during drilling and well completion, faster borehole construction time than traditional methods in coarse alluvial deposits and other poorly sorted formations, and collection of representative samples of the geologic formations and ground water; additionally, drilling fluids are not required.  相似文献   

19.
The impact of lost circulation during rotary drilling near an existing monitoring well cluster was evaluated by periodic measurements of water levels and contaminant concentrations at the well cluster. Due to regulatory concerns, changes in water levels or VOC concentration in the well cluster during drilling would trigger monitoring well redevelopment. The borehole was drilled approximately 30 feet northeast of four nested monitoring wells that screen Devonian and Silurian carbonate bedrock at depths of 15, 60, 130, and 190 feet. Following complete circulation loss at depths of 177 and 1 S3 feet in the borehole, a rapid decrease in water levels was observed in the upper three monitoring wells. The water level in the well that was screened through the lost circulation zones increased slightly.
Decreasing water levels in formations located above the point of circulation loss appear to occur in response to a sudden decrease in borehole fluid pressure caused by the flow of drilling fluid into the formation. The relative contribution of contaminated formation water lo the borehole can be estimated by using the time-drawdown relationship and estimates of transmissivity. At the point of circulation loss, significant dilution of contaminant concentrations occurs from the loss of drilling fluid into the contaminated zone. Contaminated formation water entering the borehole during periods of complete lost circulation may mobilize contaminants from upper lo lower formations. Lost circulation into a formation would be signaled by a water level increase in monitoring wells. The wells would subsequently require development to remove the volume of fluid lost to the formation, including both drilling fluid and contaminated formation water. Monitoring wells exhibiting declining water levels following lost circulation would not require development since drilling water has not entered the zones screened by these wells.  相似文献   

20.
Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 μg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号