首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric forcing of Fram Strait sea ice export: a closer look   总被引:2,自引:0,他引:2  
Fram Strait is the primary region of sea ice export from the Arctic and therefore plays an important role in regulating the amount of sea ice and freshwater within the Arctic. We investigate the variability of Fram Strait sea ice motion and the role of atmospheric circulation forcing using daily data during the period 1979–2006. The most prominent atmospheric driver of anomalous sea ice motion across Fram Strait is an east–west dipole pattern of Sea Level Pressure (SLP) anomalies with centers of action located over the Barents Sea and Greenland. This pattern, also observed in synoptic studies, is associated with anomalous meridional winds across Fram Strait and is thus physically consistent with forcing changes in sea ice motion. The association between the SLP dipole pattern and Fram Strait ice motion is maximized at 0-lag, persists year-round, and is strongest on time scales of 10–60 days. The SLP dipole pattern is the second empirical orthogonal function (EOF) of daily SLP anomalies in both winter and summer. When the analysis is repeated with monthly data, only the Barents center of the SLP dipole remains significantly correlated with Fram Strait sea ice motion. However, after removing the leading EOF of monthly SLP variability (e.g., the North Atlantic Oscillation), the full east–west dipole pattern is recovered. No significant SLP forcing of Fram Strait ice motion is found in summer using monthly data, even when the leading EOF is removed. Our results highlight the importance of high frequency atmospheric variability in forcing Fram Strait sea ice motion.  相似文献   

2.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   

3.
Declining summer snowfall in the Arctic: causes, impacts and feedbacks   总被引:1,自引:0,他引:1  
Recent changes in the Arctic hydrological cycle are explored using in situ observations and an improved atmospheric reanalysis data set, ERA-Interim. We document a pronounced decline in summer snowfall over the Arctic Ocean and Canadian Archipelago. The snowfall decline is diagnosed as being almost entirely caused by changes in precipitation form (snow turning to rain) with very little influence of decreases in total precipitation. The proportion of precipitation falling as snow has decreased as a result of lower-atmospheric warming. Statistically, over 99% of the summer snowfall decline is linked to Arctic warming over the past two decades. Based on the reanalysis snowfall data over the ice-covered Arctic Ocean, we derive an estimate for the amount of snow-covered ice. It is estimated that the area of snow-covered ice, and the proportion of sea ice covered by snow, have decreased significantly. We perform a series of sensitivity experiments in which inter-annual changes in snow-covered ice are either unaccounted for, or are parameterized. In the parameterized case, the loss of snow-on-ice results in a substantial decrease in the surface albedo over the Arctic Ocean, that is of comparable magnitude to the decrease in albedo due to the decline in sea ice cover. Accordingly, the solar input to the Arctic Ocean is increased, causing additional surface ice melt. We conclude that the decline in summer snowfall has likely contributed to the thinning of sea ice over recent decades. The results presented provide support for the existence of a positive feedback in association with warming-induced reductions in summer snowfall.  相似文献   

4.
Climate drift is a common and serious problem in most state-of-the-art coupled atmosphere-ocean-sea ice models. We consider the nature of climate drift in such a model, and in particular address the question of whether or not climate drift is inherent to the model, or whether the drift can be averted by a suitable choice of initial conditions or coupling procedure. The synchronous approach to coupling was adopted in which the ocean, atmosphere and sea ice models were spun-up independently to equilibrium using climatological forcing fields. The models were then coupled and integrated forward in time. Several experiments were performed which were designed to assess the impact of different coupling methodologies and changes in the initial conditions of the component models on the climate drift of the system. The results of our experiments indicate that climate drift is a problem inherent to the coupled model in that systematic errors in the components lead to incompatibilities in the surface fluxes required by the component models to maintain realistic climatologies. We conclude that climate drift can be averted only if the parameterizations of certain important physical processes are improved which should have the effect of reducing or eliminating these incompatibilities.  相似文献   

5.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

6.
Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF). This hampers a realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.  相似文献   

7.
Results from an ice-ocean coupled model are used to investigate the impact of long-term variability in sea ice transport at the Fram Strait on the intensity of the Atlantic deep circulation. An increase (or decrease) in sea ice transport through the Fram Strait leads to a stronger (or weaker) deep circulation in the Atlantic. Change in the sea ice transport is accompanied by a salinity anomaly in the surface layer of the Arctic Ocean. Such an anomaly could inversely affect the Atlantic circulation once it reaches deep water formation regions. If the Canadian Archipelago is closed, the anomaly is subsequently transported through the Fram Strait, and counters the initial changes in the Atlantic deep circulation. On the other hand, if the Canadian Archipelago is open, some of the anomaly is transported to the Canadian Archipelago, and the initial change in the Atlantic deep circulation persists. In the Arctic Ocean basin, the time scale and path of the salinity anomalys propagation depends on the large-scale flow at the surface of the Arctic Ocean. Our results suggest that the salinity anomaly transport and its propagation pathway out of the Arctic Ocean are important determinants of the role of sea ice transport variability through the Fram Strait in controlling the intensity of the Atlantic deep circulation.  相似文献   

8.
Adjustment and feedbacks in a global coupled ocean-atmosphere model   总被引:2,自引:1,他引:2  
 We report the analysis of two 20-year simulations performed with the low resolution version of the IPSL coupled ocean-atmosphere model, with no flux correction at the air-sea interface. The simulated climate is characterized by a global sea surface temperature warming of about 4 °C in 20 years, driven by a net heat gain at the top of the atmosphere. Despite this drift, the circulation is quite realistic both in the ocean and the atmosphere. Several distinct periods are analyzed. The first corresponds to an adjustment during which the heat gain weakens both at the top of the atmosphere and at the ocean surface, and the tropical circulation is slightly modified. Then, the surface warming is enhanced by an increase of the greenhouse feedback. We show that the mechanisms involved in the model share common features with sensitivity experiments to greenhouse gases or to SST warming. At the top of the atmosphere, most of the longwave trapping in the atmosphere is driven by the tropical circulation. At the surface, the reduction of longwave cooling is a direct response to increased temperature and moisture content at low levels in the atmospheric model. During the last part of the simulation, a regulation occurs from evaporation at the surface and longwave cooling at TOA. Most of the model drift is attributed to a too large heating by solar radiation in middle and high latitudes. The reduction of the north–south temperature gradient, and the related changes in the meridional equator-to-pole ocean heat transport lead to a warming of equatorial and subtropical regions. This is also well demonstrated by the difference between the two simulations which differ only in the parametrization of sea-ice. When the sea-ice cover is not restored to climatology the model does not maintain sea-ice at high latitudes. The climate warms more rapidly and the water vapor and clouds feedback occurs earlier. Received: 24 May 1996 / Accepted: 29 November 1996  相似文献   

9.
Annual indices of sea ice severity in Hudson Strait, for the period 1751 to 1870, are derived from written historical evidence contained in ships' log-books. These logs were all kept on Hudson's Bay Company ships sailing from London to the Company's trading posts. The log-books are homogeneous in nature and this property facilitates their numerical interpretation. The annual indices are subjected to face validity testing which indicates that they may plausibly be accepted as measures of sea ice severity. The results are examined in relation to the presentday behaviour of sea ice in Hudson Strait and they provide evidence that the summer severity of ice conditions is mainly determined by atmospheric circulation conditions.  相似文献   

10.
The predictability of the Arctic sea ice is investigated at the interannual time scale using decadal experiments performed within the framework of the fifth phase of the Coupled Model Intercomparison Project with the CNRM-CM5.1 coupled atmosphere–ocean global climate model. The predictability of summer Arctic sea ice extent is found to be weak and not to exceed 2 years. In contrast, robust prognostic potential predictability (PPP) up to several years is found for winter sea ice extent and volume. This predictability is regionally contrasted. The marginal seas in the Atlantic sector and the central Arctic show the highest potential predictability, while the marginal seas in the Pacific sector are barely predictable. The PPP is shown to decrease drastically in the more recent period. Regarding sea ice extent, this decrease is explained by a strong reduction of its natural variability in the Greenland–Iceland–Norwegian Seas due to the quasi-disappearance of the marginal ice zone in the center of the Greenland Sea. In contrast, the decrease of predictability of sea ice volume arises from the combined effect of a reduction of its natural variability and an increase in its chaotic nature. The latter is attributed to a thinning of sea ice cover over the whole Arctic, making it more sensitive to atmospheric fluctuations. In contrast to the PPP assessment, the prediction skill as measured by the anomaly correlation coefficient is found to be mostly due to external forcing. Yet, in agreement with the PPP assessment, a weak added value of the initialization is found in the Atlantic sector. Nevertheless, the trend-independent component of this skill is not statistically significant beyond the forecast range of 3 months. These contrasted findings regarding potential predictability and prediction skill arising from the initialization suggest that substantial improvements can be made in order to enhance the prediction skill.  相似文献   

11.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

12.
Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2?m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations.  相似文献   

13.
南极冰盖与海冰对全球气候具有重要影响。大气河作为高纬度地区经向水汽输送的重要途径,其对南极冰盖与海冰的影响在近年来愈发受到重视。南极大气河通常形成于高压脊(阻塞高压)与温带气旋之间的强向极经向输送带内。低频的大气河活动为南极带来强降雪,有利于冰盖质量增加。然而,强暖湿水汽侵入同时会导致表面融化、冰架崩解和极端高温,对冰盖质量存在潜在负贡献。大气河携带极端暖湿水汽与强风通过热力与动力过程导致海冰密集度下降。目前,大气河的识别算法仍不完善,其对液态降水的直接影响、与南大洋的相互作用等仍不清楚,需要进一步明晰大气河对南极冰盖与海冰的影响机制,以准确预估未来大气河对南极冰盖物质平衡与海冰变化的作用。  相似文献   

14.
Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However, these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes in precipitation will reduce runoff, decrease hydropower production (with accompanying increases in thermal generation), and increase irrigation water use, while higher temperatures will shift power demand from winter to summer months. The combined impact of these effects will generally make it more challenging to balance agricultural, power, and environmental objectives in the operation of Iberian reservoirs, though some impacts could be mitigated by better alignment between temporal patterns of irrigation and power demands.  相似文献   

15.
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.  相似文献   

16.
The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.  相似文献   

17.
We examine the representation of the mean state and interannual variability of Antarctic sea ice in six simulations of the twentieth century from coupled models participating in the Intergovernmental Panel on Climate Change fourth assessment report. The simulations exhibit a largely seasonal southern hemisphere ice cover, as observed. There is a considerable scatter in the monthly simulated climatological ice extent among different models, but no consistent bias when compared to observations. The scatter in maximum winter ice extent among different models is correlated to the strength of the climatological zonal winds suggesting that wind forced ice transport is responsible for much of this scatter. Observations show that the leading mode of southern hemisphere ice variability exhibits a dipole structure with anomalies of one sign in the Atlantic sector associated with anomalies of the opposite sign in the Pacific sector. The observed ice anomalies also exhibit eastward propagation with the Antarctic circumpolar current, as part of the documented Antarctic circumpolar wave phenomenon. Many of the models do simulate dipole-like behavior in sea ice anomalies as the leading mode of ice variability, but there is a large discrepancy in the eastward propagation of these anomalies among the different models. Consistent with observations, the simulated Antarctic dipole-like variations in the ice cover are led by sea-level pressure anomalies in the Amundsen/ Bellingshausen Sea. These are associated, to different degrees in different models, with both the southern annular mode and the El Nino-Southern Oscillation (ENSO). There are indications that the magnitude of the influence of ENSO on the southern hemisphere ice cover is related to the strength of ENSO events simulated by the different models.  相似文献   

18.
As part of the United States’ contribution to the International Trans-Antarctic Scientific Expedition (ITASE), a network of precisely dated and highly resolved ice cores was retrieved from West Antarctica. The ITASE dataset provides a unique record of spatial and temporal variations of stable water isotopes (δ18O and δD) across West Antarctica. We demonstrate that, after accounting for water vapor diffusion, seasonal information can be successfully extracted from the ITASE cores. We use meteorological reanalysis, weather station, and sea ice data to assess the role of temperature, sea ice, and the state of the large-scale atmospheric circulation in controlling seasonal average water isotope variations in West Antarctica. The strongest relationships for all variables are found in the cores on and west of the West Antarctic Ice Sheet Divide and during austral fall. During this season positive isotope anomalies in the westernmost ITASE cores are strongly related to a positive pressure anomaly over West Antarctica, low sea ice concentrations in the Ross and Amundsen Seas, and above normal temperatures. Analyses suggest that this seasonally distinct climate signal is due to the pronounced meridional oriented circulation and its linkage to enhanced sea ice variations in the adjacent Southern Ocean during fall, both of which also influence local to regional temperatures.  相似文献   

19.
Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions.  相似文献   

20.
Adaptive practices are taking place in a range of sectors and regions in Australia in response to existing climate impacts, and in anticipation of future unavoidable impacts. For a rich economy such as Australia’s, the majority of human systems have considerable adaptive capacity. However, the impacts on human systems at the intra-nation level are not homogenous due to their differing levels of exposure, sensitivity and capacity to adapt to climate change. Despite past resilience to changing climates, many Indigenous communities located in remote areas are currently identified as highly vulnerable to climate impacts due to their high level of exposure and sensitivity, but low capacity to adapt. In particular, communities located on low-lying islands have particular vulnerability to sea level rise and increasingly intense storm surges caused by more extreme weather. Several Torres Strait Island community leaders have been increasingly concerned about these issues, and the ongoing risks to these communities’ health and well-being posed by direct and indirect climate impacts. A government agency is beginning to develop short-term and long-term adaptation plans for the region. This work, however, is being developed without adequate scientific assessment of likely ‘climate changed futures.’ This is because the role that anthropogenic climate change has played, or will play, on extreme weather events for this region is not currently clear. This paper draws together regional climate data to enable a more accurate assessment of the islands’ exposure to climate impacts. Understanding the level of exposure and uncertainty around specific impacts is vital to gauge the nature of these islands’ vulnerability, in so doing, to inform decisions about how best to develop anticipatory adaptation strategies over various time horizons, and to address islanders’ concerns about the likely resilience and viability of their communities in the longer term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号