首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the effects of deep excavation on seismic vulnerability of existing buildings are investigated. It is well known that deep excavations induce significant changes both in stress and strain fields of the soil around them, causing a displacement field which can modify both the static and dynamic responses of existing buildings. A FEM model of a real case study, which takes into account geometry, non-linear soil behavior, live and dead loads, boundary conditions and soil–structure interaction, has been developed in order to estimate the soil displacements and their effects on seismic behavior of a reinforced concrete framed system close to deep excavation. Considering a significant accelerometric seismic input, the non-linear dynamic responses of the reinforced concrete framed structure, both in the pre and post-excavation configurations, have been evaluated and, then, compared to estimate the modification in seismic vulnerability, by means of different seismic damage indices and inter-story drifts.  相似文献   

2.
A new local damage index for existing RC structures is introduced, wherein deterioration caused by all deformation mechanisms (flexure, shear, anchorage slip) is treated separately for each mechanism. Moreover, the additive character of damage arising from the three response mechanisms, and the increase in degradation rate caused by their interaction, are fully taken into consideration. The proposed local damage index is then applied, in conjunction with a finite element model developed previously by the authors, to assess seismic damage response of several RC column and frame test specimens with substandard detailing. It is concluded that in all cases and independently from the prevailing mode of failure, the new local damage index describes well the damage pattern of the analysed specimens. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   

4.
根据我国现行的建筑结构抗震规范,无论是新建建筑结构的抗震设计还是既有建筑结构的抗震评估与加固,均通过小震弹性承载力计算 抗震延性构造措施来达到"小震不坏、中震可修、大震不倒"的抗震设防目标(对于不规则且具有明显薄弱部位的建筑结构还需要进行罕遇地震作用下的弹塑性层间变形验算)。对于抗震延性构造措施不满足现行规范的既有建筑结构的评估、改建、扩建,如果仅通过小震弹性的承载力计算,显然无法达到"大震不倒"的目标。本文通过引入国际上先进的基于性能的结构抗震思想,以结构层间位移和结构构件变形作为性能目标,从定量上解决了既有钢筋混凝土建筑结构的抗震评估与加固问题。  相似文献   

5.
A method for analysing plane frames subjected to dynamic forces or to ground motion is presented and illustrated by a numerical example. Numerical integration uses the approximation of constant acceleration in each time interval, as in Newmark's β-method with β = 1/4. In space, calculations are carried out storey by storey, as in Holzer's or Myklestad's methods in the case of harmonic vibrations.  相似文献   

6.
Extensive studies have confirmed the good performance of the N2 method, recommended by Eurocode8, when performing pushover analyses in regular structures. However, this procedure shows lack of accuracy in predicting the torsional motion of plan-asymmetric buildings. In order to overcome this problem, Peter Fajfar and his team have proposed an extension of the method based on a combination of a pushover analysis and of an elastic response spectrum analysis. Since definitive answers about this topic have not yet been reached, this paper intends to proceed the study applying the extended N2 method to real existing RC buildings. Three real plan-asymmetric buildings with three, five and eight storeys were assessed. The results obtained with the extended N2 method were compared with the ones evaluated by means of the original N2 and with the nonlinear dynamic analysis through the use of semi-artificial ground motions. The analyses were performed for different seismic intensities in order to evaluate the torsional response of the building through different stages of structural inelasticity. The results obtained show that the extended N2 method generally reproduces in a very good fashion the real torsional behavior of the analyzed buildings. The conclusions herein outlined, added to the ones already published by the aforementioned authors, seem to confirm that the extended N2 method can be introduced in the next version of Eurocode8 as a nonlinear static procedure capable of accurately predicting the torsional response of plan-asymmetric buildings.  相似文献   

7.
It is well known that the axial load plays an important role in the evaluation of the structural capacity of RC columns. In existing buildings this problem can be even more significant than in new ones, since the material can easily present poor mechanical properties. The paper is aimed at the investigation of the role of the axial load variation on the seismic performance of RC columns of a case-study, i.e. a doubly symmetric 4-storey RC building. The effects of the axial load variation have been checked on the first storey columns, by comparing the seismic response, measured in terms of chord rotation and shear force, with the corresponding capacity. The sensitivity of the seismic performance to the axial load is evaluated with special attention on the type of analysis adopted to determine the seismic response and on considering a wide range of values for the concrete strength. The study points out a non-negligible effect of the axial load variation on the seismic response of the case-study building, especially when combined to concrete strength variability.  相似文献   

8.
Life-cycle cost analysis of design practices for RC framed structures   总被引:1,自引:1,他引:1  
The objective of this study is to perform life-cycle cost analysis on three design practices namely weak ground storey, short and floating columns and their combinations. Life-cycle cost analysis is recognized as the only suitable tool for assessing the structural performance when the structure is expected to be functional for a long period of time. Life-cycle cost analysis is considered in this study assessing the behaviour of the three design practices against earthquake hazard. Although, a number of checks are performed in order to reduce the influence of these design practices on the seismic behaviour of reinforced concrete (RC) framed structures, it was found that the total life-cycle cost of partially infilled RC designs is significantly increased compared to that of the fully infilled one. Through the test example examined in the framework of this study general conclusions are obtained regarding the behaviour of the three design practices.  相似文献   

9.
预应力混凝土结构非线性地震反应分析   总被引:4,自引:0,他引:4  
本文针对预应力混凝土与普通混凝土不同的受力特点,提出了适合于分析预应力混凝土结构抗震性能的非线性有限元模型。模型首先将混凝土结构离散为杆单元,然后对各杆单元按分层组合原理分成许多混凝土层、预应力钢筋层和普通钢筋层,计算混凝土分层单元、预应力钢筋和普通钢筋的应力和应变,最后,根据钢筋与混凝土之间的粘结-滑移关系高速钢筋变形,根据混凝土弹性模量调整结构及杆单元变形,通过对普通混凝土构件和三个预应力混凝  相似文献   

10.
本文通过对现有能力谱法的研究,在吸收前人研究成果的基础上,探讨了一种简化的能力谱方法。该方法不是根据需求谱与能力谱有无交点(性能点)为评估依据,而是以能力谱为根据求出不同延性状态下既有建筑物相应的抗震能力,并与需求谱相应的谱加速度比较,判断结构的抗震能力是否满足要求。该方法不需要复杂的迭代计算来求结构的性能点,计算过程简单;同时,可以考虑既有建筑物的老化及损伤。最后,本文应用自行编制的计算程序,通过一个工程实例说明了该方法的应用及其特点。  相似文献   

11.
Results are presented of an investigation, the objective of which was to determine the relationship between the stiffness variability of the bearings of an isolation system and the response variability of the structure. The system is modeled as a rigid, rectangular structure that is free to translate and rotate. The isolation system consists of N isolation bearings arranged in a rectangular pattern, each with a stiffness ki that is an independent, normally distributed, random variable. Response spectrum analysis is used to obtain the analytical solution for the structure response. Approximate closed‐form expressions are obtained for the variance of the centreline displacement, rotation, corner displacement and base shear, that are in terms of the variability of the isolator stiffness, aspect ratio of the structure, and the number and layout of isolation bearings. Results show that the standard deviation of the centreline displacement and base shear decrease with increasing number of isolation bearings, and are independent of the aspect ratio and layout of isolators, and in all cases are less than 1/4 the standard deviation of the isolator stiffness. The standard deviation of the corner displacement is a function of all of the system parameters, and is bounded below by the standard deviation of the centreline displacement and above by the standard deviation of a bar aligned perpendicular to the direction of ground motion with m isolation bearings distributed along the length. The approximate expressions are shown to be in good agreement with the results of Monte Carlo simulations. The results should be of use to designers of isolated structures and manufacturers of isolation systems, in assessing the significance of stiffness variability on the response of the isolated structure. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
By exploiting the theory of the response envelopes formulated by Menun and Der Kiureghian [Envelopes for seismic response vectors. I–Theory, J. Str. Engrg. 2000; 126(3); 467–473], an algorithmic approach for seismic analysis of reinforced concrete frames is presented. It aims to fill a gap between research on spectral analysis of structures and current design practice in which the use of seismic response envelopes, available since early 2000s, is hampered by the lack of efficient and robust implementations. The proposed strategy is based on customary features (such as modal shapes and response spectra) currently adopted in professional practice, and it takes advantage of recently published formulations for the evaluation of stress resultants in arbitrarily shaped reinforced concrete cross‐sections subjected to axial force and biaxial bending. Numerical applications are illustrated in order to show the procedure's efficiency and effectiveness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Usually, buildings with seismic isolation are designed to comply with an operational building performance level after strong earthquakes. This approach, however, may limit the use of seismic isolation for the seismic rehabilitation of existing buildings with low lateral strength or substandard details, because it often requires invasive strengthening measures in the superstructure or the use of expensive custom‐made devices. In this paper, an alternative approach for the seismic rehabilitation of existing buildings with seismic isolation, based on the acceptance of limited plastic deformations in the superstructure under strong earthquakes, is proposed and then applied to a real case study, represented by a four‐storey RC frame building. Nonlinear response‐time histories analyses of an accurate model of the case‐study building are carried out to evaluate the seismic performances of the structure, comparing different rehabilitation strategies with and without seismic isolation. Initial costs of the intervention and possible (future) repair costs are then estimated. Based on the results of this study, values of the behavior factor (i.e. response modification factor) higher than those adopted in the current codes for base‐isolated buildings are tentatively proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper assesses the fundamental approaches and main procedures adopted in the seismic design of steel frames, with emphasis on the provisions of Eurocode 8. The study covers moment-resisting as well as concentrically-braced frame configurations. Code requirements in terms of design concepts, behaviour factors, ductility considerations and capacity design verifications, are examined. The rationality and clarity of the design principles employed in Eurocode 8, especially those related to the explicit definitions of dissipative and non dissipative zones and associated capacity design criteria, are highlighted. Various requirements that differ notably from the provisions of other seismic codes are also pointed out. More importantly, several issues that can lead to unintentional departure from performance objectives or to impractical solutions, as a consequence of inherent assumptions or possible misinterpretations, are identified and a number of clarifications and modifications suggested. In particular, it is shown that the implications of stability and drift requirements as well as some capacity design checks in moment frames, together with the treatment of post-buckling response and the distribution of inelastic demand in braced frames, are areas that merit careful consideration within the design process.  相似文献   

15.
Energy serves as an alternative index to response quantities like force or displacement to include the duration‐related seismic damage effect. A procedure to evaluate the absorbed energy in a multistorey frame from energy spectra was developed. For low‐ to medium‐rise frames, it required a static pushover analysis of the structure to determine the modal yield force and ductility factor of an equivalent single‐degree‐of‐freedom system for the first two modes. The energy spectra were then used to determine the energy contribution of each mode. A procedure was also developed to distribute the energy along the frame height based on energy shapes. This study showed that the second‐mode response in some cases needs to be considered to reflect the energy (or damage) concentration in the upper floors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Effect of abutment modeling on the seismic response of bridge structures   总被引:1,自引:1,他引:0  
Abutment behavior significantly influences the seismic response of certain bridge structures. Specifically in the case of short bridges with relatively stiff superstructures typical of highway overpasses, embankment mobilization and inelastic behavior of the soil material under high shear deformation levels dominate the response of the bridge and its column bents. This paper investigates the sensitivity of bridge seismic response with respect to three different abutment modeling approaches. The abutment modeling approaches are based on three increasing levels of complexity that attempt to capture the critical components and modes of abutment response without the need to generate continuum models of the embankment, approach, and abutment foundations. Six existing reinforced concrete bridge structures, typical of Ordinary Bridges in California, are selected for the analysis. Nonlinear models of the bridges are developed in OpenSees. Three abutment model types of increasing complexity are developed for each bridge, denoted as roller, simplified, and spring abutments. The roller model contains only single-point constraints. The spring model contains discrete representations of backfill, bearing pad, shear key, and back wall behavior. The simplified model is a compromise between the efficient roller model and the comprehensive spring model. Modal, pushover, and nonlinear dynamic time history analyses are conducted for the six bridges using the three abutment models for each bridge. Comparisons of the analysis results show major differences in mode shapes and periods, ultimate base shear strength, as well as peak displacements of the column top obtained due to dynamic excitation. The adequacy of the three abutment models used in the study to realistically represent all major resistance mechanisms and components of the abutments, including an accurate estimation of their mass, stiffness, and nonlinear hysteretic behavior, is evaluated. Recommendations for abutment modeling are made.  相似文献   

17.
18.
Effect of depth of soil stratum on estimated inelastic displacement of three typical structures, viz. a four storey building, a continuous bridge, and a tower, is studied and adequacy of the site amplification models of the current design codes and available empirical relationships is examined. The structures are assumed to be located on well-defined sites with varying bedrock depths, and effect of depth on elastic response spectrum, site amplification factor, displacement modification factor and inelastic displacement is studied, numerically, for two values of PGA. It is observed that soil depth has a significant effect on elastic as well as inelastic response of the structures; however, the effect of soil amplification on inelastic response is not as pronounced as in case of elastic response. Therefore, use of empirical site amplification models based on elastic response may be too conservative, for estimating inelastic response.  相似文献   

19.
A proper assumption of the concrete strength is essential to model existing RC structures; their seismic performance, in fact, can be affected by the poor quality of materials, both in terms of low strength and high variability. This paper considers the effects of the variability of concrete strength within buildings. Due to the high variability of concrete strength, in fact, buildings can experience irregular seismic responses, both in plan and in elevation. This research investigates the effects of irregularity in elevation due to the strength variability of concrete in a case study, namely a four-storey RC framed building, designed for vertical loads only. The variability of the concrete strength has been evaluated on the basis of an extensive survey carried out by the REGIONE TOSCANA (Tuscany Regional Government) on a large sample of RC framed buildings. Special attention has been paid to the adequacy of current codes provisions (Eurocodes, FEMA) on how to quantify concrete strength.  相似文献   

20.
In this paper, seismic analysis of plane RC frame structures with High Damping Rubber Bearings (HDRBs) base-isolation systems is performed in the non linear range. For RC members, a modified version of hysteretic Park model is used. For HDRB isolators, a new hysteretic model is presented, which is able to accurately predict the mechanical response in the large strain range. The dynamic equilibrium equations are solved making use, at each time step, of a block iterative Newton–Raphson scheme: the frame is divided into superelements (beams and columns) with master nodes at the extremities and internal local nodes for the computation of relations between end moments and relative rotations at superelement extremities. The effectiveness of HDRB base-isolation systems to reduce inelastic deformations in the RC superstructures is investigated through some numerical examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号