首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the past few decades,built-up land in China has increasingly expanded with rapid urbanization,industrialization and rural settlements construction.The expansions encroached upon a large amount of cropland,placing great challenges on national food security.Although the impacts of urban expansion on cropland have been intensively illustrated,few attentions have been paid to differentiating the effects of growing urban areas,rural settlements,and industrial/transportation land.To fill this gap and offer comprehensive implications on framing policies for cropland protection,this study investigates and compares the spatio-temporal patterns of cropland conversion to urban areas,rural settlements,and industrial/transportation land from 1987 to 2010,based on land use maps interpreted from remote sensing imagery.Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China.We find that 42,822 km2 of cropland were converted into built-up land in China,accounting for 43.8% of total cropland loss during 1987–2010.Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000.The contribution of rural settlement expansion decreased;however,rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality.The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions.These changes were closely related to the economic restructuring,urban-rural transformation and government policies in China.Future cropland conservation should focus on not only finding a reasonable urbanization mode,but also solving the "hollowing village" problem and balancing the industrial transformations.  相似文献   

2.
Farmland marginalization has become the main trend of land-use change in the mountainous areas of China. Using annual survey data of major agricultural production costs and earnings at national and provincial levels in China, this study aims to analyze the reasons and mechanism behind farmland marginalization in mountainous areas. We find that farmers on plains are able to reduce their per mu labor input effectively through intensive use of agricultural machinery, which has minimized the impact of the increase in labor price. However, it is extremely challenging for farmers in mountainous areas to use the same method owing to the rough terrain. Thus, per laborer farming area in these areas has increased relatively slowly, causing a widening gap in agricultural labor productivity between the two regions. With the rapid rise in labor costs since 2003, the marginalization of cultivated land in mountainous areas is evident. In 2013, the net profit of agricultural production in mountainous China fell below zero. Since 2000, the land-use and land-cover change in these areas was characterized by the reduction of farmland area, reforestation, and the enhancement of the NDVI value. The high correlation between the NDVI change rate and the ratio of change in farmland(r = –0.70) and forest(r = 0.91) in mountainous areas at provincial level further attests to the trend of farmland marginalization there. Finally, we summarize the mechanism of such marginalization against the backdrop of the rapid increase in the opportunity cost of farming and the rapid fall of agricultural labor forces in mountainous areas. This study contributes to a deep understanding of the development process of farmland marginalization and abandonment as well as forest transition in Chinese mountainous areas.  相似文献   

3.
The Three Gorges Reservoir Area(TGRA)is typical of an ecologically vulnerable area,comprised of rural and mountainous areas,and with high immigration.Because of its economic and ecologic importance,studying the traditional agroecosystem changes in the TGRA is key to rural development and revitalization.In this study,we apply a framework of theoretical analysis,empirical study,and trend prediction to the Caotangxi River watershed within the TGRA.Using QuickBird high-resolution remote sensing images from 2012 to 2017 to evaluate natural resources and farmers’behavior,we analyze the transition and trends in the traditional agroecosystem in mountainous areas of the TGRA at spatial scale of the man-land relationship.We find that the agroecosystem in the TGRA can be divided into four modes using 100 m interval buffer rings:high-low-low,high-low-high,low-high-low and low-low-high mode where the different modes represent the agricultural development stages in the TGRA.Furthermore,the traditional agroecosystem in TGRA,represented by system elements such as farmers and sloping farmland,is transforming to accommodate the diversification of farmer livelihoods.For example,sloping farmland,which was dominated by a production function,now has equal emphasis on ecological and economic functions.Spatially,the range of the agroecosystem transition has migrated beyond high mountain areas to flat valley areas.Generally,this study provides an overview of land use in rural areas,controls on soil and water loss in mountainous areas,and better rural living environments in the TGRA.  相似文献   

4.
The implementation of new type industrialization and urbanization and agricultural modernization strategies lacks of a major hand grip and spatial supporting platform, due to long-term existed "dual-track" structure of rural-urban development in China as well as un- stable rural development institution and mechanism. It is necessary to restructure rural pro- duction, living and ecological space by carrying out land consolidation, so as to establish a new platform for building new countryside and realizing urban-rural integration development in China. This paper develops the concept and connotation of rural spatial restructuring. Basing on the effects analysis of industrialization and urbanization on rural production, living and ecological space, the mechanism of pushing forward rural spatial restructuring by carry- ing out land consolidation is probed. A conceptualization of the models of rural production, living and ecological spatial restructuring is analyzed combining with agricultural land con- solidation, hollowed villages consolidation and industrial and mining land consolidation. Fi- nally, the author argues that a "bottom-up" restructuring strategy accompanied by a few "top-down" elements is helpful for smoothly pushing forward rural spatial restructuring in China. In addition, the optimization and restructuring of rural production, living and ecological space will rely on the innovations of regional engineering technology, policy and mechanism, and mode of rural land consolidation, and more attentions should be paid to rural space, the foundation base and platform for realizing urban-rural integration development.  相似文献   

5.
Since the 1950 s, noteworthy farmland abandonment has been occurring in many developed countries and some developing countries. This global land use phenomenon has fundamentally altered extensive rural landscapes. A review of global farmland abandonment under the headings of "land use change – driving mechanisms – impacts and consequences – policy responses" found the following:(1) Farmland abandonment has occurred primarily in developed countries in Europe and North America, but the extent of abandonment has varied significantly.(2) Changing socio-economic factors were the primary driving forces for the farmland abandonment. And land marginalization was the fundamental cause, which was due to the drastic increase of farming opportunity cost, while the direct factor for abandonment was the shrink of agricultural labor forces.(3) Whether to abandon, to what extent and its spatial distributions were finally dependent on integrated effect from the physical conditions, laborer attributes, farming and regional socio-economic conditions at the village, household and parcel scales. With the exception of Eastern Europe, farmland abandonment was more likely to occur in mountainous and hilly areas, due to their unfavorable farming conditions.(4) A study of farmland abandonment should focus on its ecological and environmental effects, while which is more positive or more negative are still in dispute.(5) Increasing agricultural subsidies will be conductive to slowing the rate of farmland abandonment, but this is not the only measure that needs to be implemented. Due to China's rapid urbanization, there is a high probability that the rate of abandonment will increase in the near future. However, very little research has focused on this rapid land-use trend in China, and, as a result, there is an inadequate understanding of the dynamic mechanisms and consequences of this phenomenon. This paper concludes by suggesting some future directions for further research in China. These directions include monitoring regional and national abandonment dynamics, analyzing trends, assessing the risks and socio-economic effects of farmland abandonment, and informing policy making.  相似文献   

6.
中国耕地和农村宅基地利用转型耦合特征与机制(英文)   总被引:16,自引:5,他引:11  
Land use transition refers to the changes in land use morphology (both dominant morphology and recessive morphology) of a certain region over a certain period of time driven by socio-economic change and innovation, and it usually corresponds to the transition of socio-economic development phase. In China, farmland and rural housing land are the two major sources of land use transition. This paper analyzes the spatio-temporal coupling characteristics of farmland and rural housing land transition in China, using high-resolution Landsat TM (Thematic Mapper) data in 2000 and 2008, and the data from the Ministry of Land and Resources of China. The outcomes indicated that: (1) during 2000-2008, the cor-relation coefficient of farmland vs. rural housing land change is -0.921, and it shows that the change pattern of farmland and rural housing land is uncoordinated; (2) the result of Spear-man rank correlation analysis shows that rural housing land change has played a major role in the mutual transformation of farmland and rural housing land; and (3) it shows a high-degree spatial coupling between farmland and rural housing land change in southeast China during 2000-2008. In general, farmland and rural housing land transition in China is driven by socio-economic, bio-physical and managerial three-dimensional driving factors through the interactions among rural population, farmland and rural housing land. However, the spatio-temporal coupling phenomenon and mechanism of farmland and rural housing land transition in China are largely due to the "dual-track" structure of rural-urban develop-ment.  相似文献   

7.
The aim of this study is to establish several important factors representing land use intensification in cultivated land(denoted by CII), using a multi-dimensional approach to achieve realistic and practical cultivated land use policies in China. For this reason, the theoretical framework was first built to explain the changes of land use intensification in the cultivated land, and then the variables and index were further developed for the purpose of characterizing the dynamic trends and driving forces of the land use intensification in the cultivated land at the provincial level. The study results indicate that the extent of CII significantly increased during the period of 1996 to 2008, due to the extensive use of fertilizers, machinery and pesticide, increased labor and capital input, and intensified land use. Moreover, the principal component regression results show that the productivity of cultivated land, economic benefits of cultivated land, labor productivity, and land use conversion are the main factors affecting the village development. The first three factors play a positive role, while the last one has a negative effect on the land use intensification in the cultivated land. According to these results, the main policies for sustainable intensification in cultivated land are proposed. First, the sustainable pathways for intensification should be adopted to reduce the unsustainable uses of chemical fertilizer, agricultural chemicals, etc. Second, the conditions for agricultural production should be further improved to increase the cultivated land productivity. Third, it is very necessary and helpful for improving labor productivity and land use efficiency from the viewpoint of accelerated the cultivated land circulation. The last step is to positively affect the production activities of peasants by means of reforming the subsidy standards.  相似文献   

8.
Spatially explicit modeling techniques recently emerged as an alternative to monitor land use changes. This study adopted the well-known CLUE-S(Conversion of Land Use and its Effects at Small regional extent) model to analyze the spatio-temporal land use changes in a hot-spot in Northeast China(NEC). In total,13 driving factors were selected to statistically analyze the spatial relationships between biophysical and socioeconomic factors and individual land use types. These relationships were then used to simulate land use dynamic changes during 1980–2010 at a 1 km spatial resolution,and to capture the overall land use change patterns. The obtained results indicate that increases in cropland area in NEC were mainly distributed in the Sanjiang Plain and the Songnen Plain during 1980–2000,with a small reduction between 2000 and 2010. An opposite pattern was identified for changes in forest areas. Forest decreases were mainly distributed in the Khingan Mountains and the Changbai Mountains between 1980 and 2000,with a slight increase during 2000–2010. The urban areas have expanded to occupy surrounding croplands and grasslands,particularly after the year 2000. More attention is needed on the newly gained croplands,which have largely replaced wetlands in the Sanjiang Plain over the last decade. Land use change patterns identified here should be considered in future policy making so as to strengthen local eco-environmental security.  相似文献   

9.
Land is the root of rural revitalization, and its core is to reinvigorate land resources through the building up of land capacity. Since the late 1990s, land consolidation efforts have been widely extended to all parts of China. Land consolidation has served as an essential instrument for reinvigorating stock land, strengthening intensive land use, timely supplementing cultivated land, and promoting agricultural modernization, as well as urban-rural integration. This study uses a typical poor village(Dadao Village) in a state-designated impoverished county(Fuping County, Hebei Province), to analyze the socioeconomic benefits and eco-environmental impacts of land consolidation. With the aid of first-hand data from questionnaire surveys, face-to-face interviews and the visual interpretation of land use and land cover changes(LUCC), we found that: 1) the barren hilly land consolidation(BHLC)helps to promote the transformation of resource-advantages into asset-advantages in poverty-stricken areas. In 2017, 60.16% households in the study area gained the additional transferred-income with an annual average of 2843 yuan, while 19.11% households received the wage-income with an annual average of 9871 yuan. 2) Land consolidation inspires farmers' enthusiasm to participate in village government and helps alleviate rural poverty. From 2014 to 2017, land consolidation has helped 585 poor in the village out of poverty. Meanwhile,by land consolidation, most farmers' attitudes towards land consolidation have shifted from"not caring" to "have great concern," and their identity cognition has gradually changed from being bystanders to becoming decision makers and supervisors. 3) Further analysis demonstrated that land consolidation could not only increase the quantity and quality of arable land,but also have a certain impact on eco-environment. During 2014–2016, the BHLC in the study area transformed 242.12 ha unused barren hilly land and open forest land into well-facilitated arable land, and increased the average arable land by 0.19 ha per capita. Also, the index of land use intensity increased by 27.01% between 2014 and 2016. Farmers' perceptions of environmental awareness have confirmed that such high-intensity LUCC were significant enough to make two-side impacts on eco-environment. We appeal to establish a combined organization and encouragement mechanism of rural land consolidation, to take the full breadth and depth of farmers' participation into consideration, and to formulate more scientific and sustainable land consolidation planning. Also, we put forward some suggestions and notes for the implementation and promotion of BHLC model. These findings can provide beneficial references for those involved in policymaking and planning in the areas of land consolidation and poverty alleviation in China, as well as other developing countries around the world.  相似文献   

10.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following:(1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010.(2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland.(3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dra-matically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted.(4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological-oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed.(5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

11.
Based on GIS and statistical methods, with the help of searching historical literatures and calculating the landscape indices, the land use changes of Qian‘an County in both spatial and temporal aspects from 1945 to 1996 has been analyzed in this paper. And the driving forces of land use changes and their ecological effects are discussed too. The main findings of this study are as follows: (1) Land use changed greatly in Qian‘an during 1945-1996, characterized by a decrease in grassland, wetland and water bodies, and an increase in cultivated land, saline-alkali land, and the land for housing and other construction purposes. Grassland decreased by 175,828.66 ha, and cultivated land increased by 102,137.23 ha over the half century. Accordingly, the main landscape type changed from a steppe landscape to a managed agricultural ecosystem. (2) Results of correlation analysis show that the land use change in the study area was mainly driven by the socioeconomic factors. (3) The ecological effects of land use change in the area are characterized by serious salinization, degression of soil fertility and the weakening, of landscaoe suitability.  相似文献   

12.
Based on GIS and statistical methods, with the help of searching historical literatures and calculating the landscape indices, the land use changes of Qian'an County in both spatial and temporal aspects from 1945 to 1996 has been analyzed in this paper. And the driving forces of land use changes and their ecological effects are discussed too. The main findings of this study are as follows: (1) Land use changed greatly in Qian'an during 1945-1996, characterized by a decrease in grassland, wetland and water bodies, and an increase in cultivated land, saline-alkali land, and the land for housing and other construction purposes. Grassland decreased by 175,828.66 ha, and cultivated land increased by 102,137.23 ha over the half century. Accordingly, the main landscape type changed from a steppe landscape to a managed agricultural ecosystem. (2) Results of correlation analysis show that the land use change in the study area was mainly driven by the socioeconomic factors. (3) The ecological effects of land use change in the area are characterized by serious salinization, degression of soil fertility and the weakening of landscape suitability.  相似文献   

13.
Geographically explicit historical land use and land cover datasets are increasingly required in studies of climatic and ecological effects of human activities. In this study, using historical population data as a proxy, the provincial cropland areas of Qinghai province and the Tibet Autonomous Region(TAR) for 1900, 1930, and 1950 were estimated. The cropland areas of Qinghai and the TAR for 1980 and 2000 were obtained from published statistical data with revisions. Using a land suitability for cultivation model, the provincial cropland areas for the 20 th century were converted into crop cover datasets with a resolution of 1 × 1 km. Finally, changes of sediment retention due to crop cover change were assessed using the sediment delivery ratio module of the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST) model(version 3.3.1). There were two main results.(1) For 1950–1980 the fractional cropland area increased from 0.32% to 0.48% and land use clearly intensified in the Tibetan Plateau(TP), especially in the Yellow River–Huangshui River Valley(YHRV) and the midstream of the Yarlung Zangbo River and its two tributaries valley(YRTT). For other periods of the 20 th century, stability was the main trend.(2) For 1950–1980, sediment export increased rapidly in the Minhe autonomous county of the YHRV, and in the Nianchu River and Lhasa River basins of the YRTT, which means that sediment retention clearly decreased in these regions over this period. The results of this assessment provide scientific support for conservation planning, development planning, or restoration activities.  相似文献   

14.
Suitable spatial morphology of cultivated land is a basic requirement for sustaining agricultural economic development in mountainous areas. Coordinated development efficiency of cultivated land spatial morphology and agricultural economy(CECA) is of great practical significance to measure the efficiency of cultivated land use, and thereby promote regional rural revitalization. However, few studies to date have focused on coordinated development efficiency between cultivated land use and agricul...  相似文献   

15.
Understanding the driving forces and mechanism of land use change is a key issue in land change science, and has received much attention over the past 30 years. While many driving forces have been identified, the mechanism of land use change is still unclear, mainly because of limited knowledge of the underlying motivation for land use change. Traditionally, the underlying motivation for land use change was ascribed to people's pursuit of satisfying their own demands or that of profit maximization. However, those theoretical hypotheses combine all productive factors without highlighting certain predominant factor, in this paper, a case study was conducted on the variation of land productivity, capital productivity and labor productivity in agricultural land use in Xinjiang Uygur Autonomous Region of China. The case study revealed that only labor productivity presented a long-term increasing trend in regional cotton and grain production. This result implies that people's pursuit of increasing labor pro- ductivity is probably the underlying motivation for land use change. Additional details identi- fied in agricultural and non-agricultural land use in China support the above implication. As labor productivity is a determinant of people's living standards, increasing labor productivity means improving people's living standards. Therefore, it is concluded that land use change results from people's pursuit of increasing labor productivity in a changing environment.  相似文献   

16.
Land use and its dynamics have attracted considerable scientific attention for their significant ecological and socioeconomic implications.Many studies have investigated the past changes in land use,but efforts exploring the potential changes in land use and implications under future scenarios are still lacking.Here we simulate the future land use changes and their impacts on ecosystem services in Northeast China(NEC) over the period of 2000–2050 using the CLUE–S(Conversion of Land Use and its Effects at Small regional extent) model under the scenarios of ecological security(ESS),food security(FSS) and comprehensive development(CDS).The model was validated against remote sensing data in 2005.Overall,the accuracy of the CLUE–S model was evaluated at 82.5%.Obtained results show that future cropland changes mainly occur in the Songnen Plain and the Liaohe Plain,forest and grassland changes are concentrated in the southern Lesser Khingan Mountains and the western Changbai Mountains,while the Sanjiang Plain will witness major changes of the wetlands.Our results also show that even though CDS is defined based on the goals of the regional development plan,the ecological service value(ESV) under CDS is RMB 2656.18 billion in 2050.The ESV of CDS is lower compared with the other scenarios.Thus,CDS is not an optimum scenario for eco-environmental protection,especially for the wetlands,which should be given higher priority for future development.The issue of coordination is also critical in future development.The results can help to assist structural adjustments for agriculture and to guide policy interventions in NEC.  相似文献   

17.
Yu  Xia  Zhou  Weijian  Wang  Yunqiang  Cheng  Peng  Hou  Yaoyao  Xiong  Xiaohu  Du  Hua  Yang  Ling  Wang  Ya 《地理学报(英文版)》2020,30(6):921-934
The vertical distribution and exchange mechanisms of soil organic and inorganic carbon(SOC, SIC) play an important role in assessing carbon(C) cycling and budgets. However, the impact of land use through time for deep soil C(below 100 cm) is not well known. To investigate deep C storage under different land uses and evaluate how it changes with time, we collected soil samples to a depth of 500 cm in a soil profile in the Gutun watershed on the Chinese Loess Plateau(CLP); and determined SOC, SIC, and bulk density. The magnitude of SOC stocks in the 0–500 cm depth range fell into the following ranking: shrubland(17.2 kg m~(-2)) grassland(16.3 kg m~(-2)) forestland(15.2 kg m~(-2)) cropland(14.1 kg m~(-2)) gully land(6.4 kg m~(-2)). The ranking for SIC stocks were: grassland(104.1 kg m~(-2)) forestland(96.2 kg m~(-2)) shrubland(90.6 kg m~(-2)) cropland(82.4 kg m~(-2)) gully land(50.3 kg m~(-2)). Respective SOC and SIC stocks were at least 1.6-and 2.1-fold higher within the 100–500 cm depth range, as compared to the 0–100 cm depth range. Overall SOC and SIC stocks decreased significantly from the 5 th to the 15 th year of cultivation in croplands, and generally increased up to the 70 th year. Both SOC and SIC stocks showed a turning point at 15 years cultivation, which should be considered when evaluating soil C sequestration. Estimates of C stocks greatly depends on soil sampling depth, and understanding the influences of land use and time will improve soil productivity and conservation in regions with deep soils.  相似文献   

18.
贵州猫跳河流域土地利用变化和土壤侵蚀(英文)   总被引:2,自引:2,他引:2  
Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwest China. In order to bring soil erosion under control and restore environment, the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province. This paper explored the relationship between land use and soil erosion in the Maotiao River watershed, a typical agricultural area with severe soil erosion in central Guizhou Province. In this study, we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973, Landsat TM data in 1990 and 2007. Soil erosion change characteristics from 1973 to 2007, and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment. The results indicate that changes in land use within the watershed have significantly affected soil erosion. From 1973 to 1990, dry farmland and rocky desertified land significantly increased. In contrast, shrubby land, other forestland and grassland significantly decreased, which caused accelerated soil erosion in the study area. This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs. Soil erosion also significantly varied among land-use types. Erosion was most serious in dry farmland and the lightest in paddy field. Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion, and conservation practices should be taken in these areas. The results of this study provide useful information for decision makers and planners to take sustainable land use management and soil conservation measures in the area.  相似文献   

19.
As the Rural Revitalization Strategy is gradually implemented, China's rural areas are set to have more diverse function requirements. This paper selects the Changsha-Zhuzhou-Xiangtan region(Chang-Zhu-Tan) consisting of 23 county-level units) as a case study and looks at its economic development, agricultural product supply, social security and ecological service functions during 1996–2016. It then constructs an index system to evaluate the temporal evolution of the region's rural functions. SPSS 19.0 and DPS 7.05 software, as well as Pearson's correlation coefficient analysis, system clustering, optimal segmentation of ordered samples and other methods, are used to study the evolution traits, regional differentiation characteristics and driving forces of rural functions in the region. The results show, first of all, that the overall evolution trend is increasing in functions with periodic characteristics, the key nodes being 2000 and 2008. Second, there is clear geographical differentiation in the evolution of rural functions. The economic development function shows rapid growth in the urban agglomeration's center and relatively weak growth at the periphery; the agricultural product supply function and ecological service function are concentrated in county-level units with abundant cultivated and forest land; and the social security function displays similar geographical differentiation to the economic development function. Overall, there is an obvious discrepancy in the degree of development of rural functions among county-level units of the Changsha-Zhuzhou-Xiangtan urban agglomeration; the rural functions of the agglomeration and peripheral county-level units have different development traits; and county-level units display functional differentiation. Third, rural functions have evolved as a result of interactions between various factors, such as natural resources, socio-economic conditions and local transport conditions. The new driving forces caused by urbanization are ultimately leading the evolution of rural functions toward multi-functional comprehensive development.  相似文献   

20.
生态退耕对中国农田生产力的影响(英文)   总被引:1,自引:0,他引:1  
The changes in cropland quantity and quality due to land use are critical concerns to national food security, particularly for China. Despite the significant ecological effects, the ecological restoration program (ERP), started from 1999, has evidently altered the spatial patterns of China’s cropland and agricultural productivity. Based on cropland dynamic data from 2000 to 2008 primarily derived from satellite images with a 30-m resolution and satellite-based net primary productivity models, we identified the impacts on agricultural productivity caused by ERP, including "Grain for Green" Program (GFGP) and "Reclaimed Cropland to Lake" (RCTL) Program. Our results indicated that the agricultural productivity lost with a rate of 132.67×104 t/a due to ERP, which accounted for 44.01% of the total loss rate caused by land use changes during 2000-2005. During 2005-2008, the loss rate due to ERP decreased to 77.18×104 t/a, which was equivalent to 58.17% of that in the first five years and 30.22% of the total loss rate caused by land use changes. The agricultural productivity loss from 2000-2008 caused by ERP was more attributed to GFGP (about 70%) than RCTL. Although ERP had a certain influence on cropland productivity during 2000-2008, its effect was still much less than that of urbanization; moreover, ERP was already converted from the project implementation phase to the consolidation phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号