首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ecological corridor networks can efficiently improve regional landscape connectivity. Corridors for multiple faunal species movements are receiving increasing attention and graph theory is considered a promising way to explore landscape connectivity. In Xishuangbanna, the circuit theory was applied to explore the corridor networks for biodiversity for the first time. In addition, disturbances caused by the road network and the protection efficiency of National Nature Reserves and planned area for corridors were evaluated. Results indicated that the regional corridor networks could be estimated using a modified circuit method and Zonation model. Spatially, the key corridors were concentrated in the central-western, southeastern and northern regions. We detected 66 main intersections between key corridors and the road buffer. Of these points, 65% are forest, 23% grassland and 12% farmland. More than half of the area of National Nature Reserves constituted the top 50% of the corridors, and the planned corridor areas could efficiently protect some key corridors. However, these reserves only protected about 17% of regional key corridors, and the corridor conservation area in the western and northern regions were absent. The issues addressed in our study aided in the elucidation of the importance of regional landscape connectivity assessments and operational approaches in conservation planning.  相似文献   

2.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following:(1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010.(2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland.(3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dra-matically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted.(4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological-oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed.(5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

3.
Yang  Fan  He  Fanneng  Li  Meijiao  Li  Shicheng 《地理学报(英文版)》2020,30(7):1083-1094
Global historical land use scenarios are widely used to simulate the climatic and ecological effects of changes in land cover; however, reliability evaluation of these scenarios for data on China's forests is missing. By using a historical document-derived Chinese forest dataset(CHFD) for the years 1700–2000, we evaluated the reliability of data on forests in China over three global scenarios—SAGE(Center for Sustainability and the Global Environment), PJ(Pongratz Julia), and KK10(Kaplan and Krumhardt 2010)—through trend-related, quantitative, and spatial comparisons. The results show the following:(1) Although the area occupied by forests in China in the SAGE, PJ, KK10, and CHFD datasets decreased over the past 300 years, there were large differences between global scenarios and CHFD. The area occupied by forests in China in the SAGE scenario for 1700–1990 was 20%–40% more than that according to CHFD, and that occupied by forests in the KK10 from 1700 to 1850 was 32%–46% greater than that in CHFD. The difference between the PJ and CHFD was lower than 20% for most years.(2) Large differences were detected at the provincial and grid cell scales, where the PJ scenario was closer to CHFD in terms of total forested area. Provinces with large differences in terms of trend and quantity were 84% and 92% of all provinces, respectively. Grid cells with relative differences greater than 70% accounted for 60%–80% of all grids.(3) These global historical land use scenarios do not accurately reveal the spatiotemporal pattern of Chinese forests due to differences in the data sources, methods of reconstruction, and spatial scales.  相似文献   

4.
Species abundance and habitat distribution are two important aspects of species conservation studies and both are affected by similar environmental factors. Forest resource inventory data in 2010 were used to evaluate the patterns of habitat for target species of Cervidae in six typical forestry bureaus of the Yichun forest area in the Lesser Xing’an Mountains, northeastern China. A habitat suitability index(HSI) model was used based on elevation, slope, aspect, vegetation and age of tree. These five environmental factors were selected by boosted regression tree(BRT) analysis from 14 environmental variables collected during field surveys. Changes in habitat caused by anthropogenic activities mainly involving settlement and road factors were also considered. The results identified 1780.49 km2 of most-suitable and 1770.70 km2 of unsuitable habitat areas under natural conditions, covering 16.38% and 16.29% of the entire study area, respectively. The area of most-suitable habitat had been reduced by 4.86% when human interference was taken into account, whereas the unsuitable habitat area had increased by 11.3%, indicating that anthropogenic disturbance turned some potential habitats into unsuitable ones. Landscape metrics indicated that average patch area declined while patch density and edge density increased. This suggests that as habitat becomes fragmented and its quality becomes degraded by human activities, cervid populations will be threatened with extirpation. The study helped identify the spatial extent of habitat influenced by anthropogenic interference for the local cervid population. As cervid species clearly avoid human activities, more attention should be paid on considering the way and intensity of human activities for habitat management as fully as possible.  相似文献   

5.
Zhu  Wenbo  Zhang  Jingjing  Cui  Yaoping  Zhu  Lianqi 《地理学报(英文版)》2020,30(9):1507-1522
Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbon storage at both temporal and spatial scales.For this study,the Qihe catchment in the southern part of the Taihang Mountains was taken as an example;its land use change from 2005 to 2015 was analyzed,the Markov-CLUE-S composite model was used to predict land use patterns in 2025 under natural growth,cultivated land protection and ecological conservation scenario,and the land use data were used to evaluate ecosystem carbon storage under different scenarios for the recent 10-year interval and the future based on the carbon storage module of the In VEST model.The results show the following:(1) the ecosystem carbon storage and average carbon density of Qihe catchment were 3.16×107 t and 141.9 t/ha,respectively,and decreased by 0.07×107 t and 2.89 t/ha in the decade evaluated.(2) During 2005–2015,carbon density mainly decreased in low altitude areas.For high altitude area,regions with increased carbon density comprised a similar percentage to regions with decreased carbon density.The significant increase of the construction areas in the middle and lower reaches of Qihe and the degradation of upper reach woodland were core reasons for carbon density decrease.(3) For 2015–2025,under natural growth scenario,carbon storage and carbon density also significantly decrease,mainly due to the decrease of carbon sequestration capacity in low altitude areas;under cultivated land protection scenario,the decrease of carbon storage and carbon density will slow down,mainly due to the increase of carbon sequestration capacity in low altitude areas;under ecological conservation scenario,carbon storage and carbon density significantly increase and reach 3.19×107 t and 143.26 t/ha,respectively,mainly in regions above 1100 m in altitude.Ecological conservation scenario can enhance carbon sequestration capacity but cannot effectively control the reduction of cultivated land areas.Thus,land use planning of research areas should consider both ecological conservation and cultivated land protection scenarios to increase carbon sink and ensure the cultivated land quality and food safety.  相似文献   

6.
The Three-River Headwaters Region(TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological security of China. Because of climate changes and human activities, ecological degradation occurred in this region. Therefore, "The nature reserve of Three-River Source Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following:(1) In the past 12 years(2000–2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend.(2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure.(3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south.(4) The reverse characteristics of vegetation coverage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin.(5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature.(6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

7.
China is physically and socio-economically susceptible to global warming-derived high temperature extremes because of its vast area and high urban population density. This article presents a scenario-based analysis method for high temperature extremes aimed at illustrating the latter’s hazardous potential and exposure across China. Based on probability analysis, high temperature extreme scenarios with return periods of 5, 10, 20, and 50 years were designed, with a high temperature hazard index calculated by integrating two differentially-weighted extreme temperature indices (maximum temperature and high temperature days). To perform the exposure analysis, a land use map was employed to determine the spatial distribution of susceptible human activities under the different scenarios. The results indicate that there are two heat-prone regions and a sub-hotspot occupying a relatively small land area. However, the societal and economic consequences of such an environmental impact upon the North China Plain and middle/lower Yangtze River Basin would be substantial due to the concentration of human activities in these areas.  相似文献   

8.
Land use in the northeast region of Thailand has changed dramatically in the past two decades. These changes are mainly due to the government policies, which launched a scheme to promote rubber plantation during 2003–2013 targeting to solve the problem of poverty in the region. At least 50,000 ha of paddy fields were found to be converted to other land use types between 2002 and 2012. This study was conducted in Nong Khai and Bueng Kan province of northeast Thailand, where massive rubber plantation is going on prompting significant amount of land-use change, with the objective of investigating how land-use changes will affect on food availability in future. We analyzed land-use changes of the past and simulated future land uses using GIS and Landsat Thematic Mapper Data. The most obvious change was the decrease in paddy field and an increase in rubber plantation. This eventually leads to decreased paddy production affecting food supply of farm households. The land use projections for 2032 were done for three scenarios using Dyna-CLUE model. Unlike business as usual scenario, which will further decrease the paddy area, other scenarios with different land use policies if implemented will help protect paddy areas and thus achieving higher food production locally. The lack of implementation of proper spatial policies will lead to a further loss of paddy areas at macro level.The smallholder farmers may be highly vulnerable to land use-change and experience significant food crop losses, food insecurity and income loss when they change the land to rubber and there is market failure.  相似文献   

9.
《极地研究》2008,19(2):193-211
With parameterized wave mixing,the circulation and the tidal current in the Bering Sea were simulated simultaneously using the three-dimensional Princeton Ocean Model.The simulated circulation pattern in the deep basin is relatively stable, cyclonic,and has little seasonal change.The Bering Slope Current between 200-1000 m isobaths was estimated to be 5 Sv in volume transport.The Kamchatka Current was estimated to be 20 Sv off the Kamchatka Peninsula.The Bering shelf circulations vary with season,driven mainly by wind.These features are consistent with historical estimates .A counter current was captured flowing southeastward approximately along the 200 m isobath of the Bering Slope,opposite to the northwestward Bering Slope Current ,which needs to be validated by observations.An upwelling current is located in the shelf break(120-1000 m) area,which may imply the vertical advection of nutrients for supporting the Bering Sea Green Belt seasonal plankton blooms in the break-slope area.The Bering Slope Current is located in a downwelling area.  相似文献   

10.
三江源区径流演变及其对气候变化的响应(英文)   总被引:2,自引:2,他引:0  
Runoff at the three time scales(non-flooding season,flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai(Yellow River Source Region:YeSR),Zhimenda(Yangtze River Source Region:YaSR) and Changdu(Lancang River Source Region:LcSR) by hydrological modeling,trend detection and comparative analysis.Also,future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested.The results showed that the annual and non-flooding season runoff decreased significantly in YeSR,which decreased the water discharge to the midstream and downstream of the Yellow River,and intensified the water shortage in the Yellow River Basin,but the other two regions were not statistically significant in the last 48 years.Compared with the runoff in baseline(1990s),the runoff in YeSR would decrease in the following 30 years(2010-2039),especially in the non-flooding season.Thus the water shortage in the midstream and downstream of the Yellow River Basin would be serious continuously.The runoff in YaSR would increase,especially in the flooding season,thus the flood control situation would be severe.The runoff in LcSR would also be greater than the current runoff,and the annual and flooding season runoff would not change significantly,while the runoff variation in the non-flooding season is uncertain.It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model.Furthermore,the most sensitive region to climate change is YaSR,followed by YeSR and LcSR.  相似文献   

11.
Su  Xukun  Han  Wangya  Liu  Guohua 《地理学报(英文版)》2019,29(7):1211-1227

In Southwest China, five Nature Reserves (NRs) (Mangkang, Baimaxueshan, Yunling, Habaxueshan, and Yunlongtianchi) play a key role in protecting the endemic and endangered Yunnan snub-nosed monkey (YSM) (Rhinopithecus bieti). However, increasing human activities threaten its habitats and corridors. We used a GIS-based Niche Model to delineate potential core habitats (PCHs) of the YSMs and a Linkage Mapper corridor simulation tool to restore potential connectivity corridors (PCCs), and defined five scenarios. A normalized importance value index (NIVI) was established to identify the protection priority areas (PPAs) for the YSMs for five scenarios. The results indicated that locations of the habitats and corridors were different in the five scenarios, thereby influencing the distribution of the PPAs and protection network of the YSMs. The NIVI value of Baimaxueshan nature reserve was 1 in the five scenarios, which implied the maximum importance. There were only 7 PCHs and 16 PCCs (with the longest average length of 223.13 km) which were mainly located around 5 NRs in scenario III. The protection network of the YSMs was composed of 16 PCHs, 18 PCCs, and 5 NRs. Under each scenario, most of the PCHs and the PCCs were located in the south of the study area. The five NRs only covered 2 PPAs of the YSMs. We suggest that the southern part of the study area needs to be strictly protected and human activities should be limited. The area of the five NRs should be expanded to maximize protection of the YSMs in the future.

  相似文献   

12.
罗紫元  曾坚 《地理研究》2022,41(2):341-357
从资源承载和生态保护的角度预测城镇土地利用变化,是实现国土空间用途管制的客观需求。以典型缺水城市天津市为研究区,采用系统动力学模型预测土地利用规模、最小成本路径法构建生态廊道和FLUS模型模拟土地利用变化等方法,分别模拟自然扩张和资源环境保护情景下天津市2035年土地利用情况。结果表明:① 资源约束条件显著制约城镇人口和建设用地的超量发展,随着资源约束增强、科技发展增速,人口和建设用地增长量随之降低,城镇GDP保持稳定增长。② 天津市重要生态廊道以南北向联系为主,东部和北部生态廊道重要性较高,部分生态廊道由于路径较长或距离建设用地较近而面临被蚕食挤压的风险。③ 水体湿地在资源环境保护情境下面积略有增长,在自然扩张情境下则延续以往不可持续的发展模式,出现向草地退化的情况,部分生态源地和廊道受到耕地侵占和建设用地扩张的影响。④ 受交通发展和京津职住分离的影响,天津市城镇建设用地增长主要发生在蓟州、武清和宝坻区。此外,在资源环境保护情景下,中心城区和滨海新区增长率较低,津南区表现出较大发展潜力。以资源环境承载约束城镇扩张,能够为国土空间规划实践提供科学引导。  相似文献   

13.
濑溪河国家湿地公园位于重庆市荣昌区,地处西南地区腹心地带,是集天然河流与人工湿地于一体的复合型湿地生态系统,具有典型的西南丘区河流湿地特征。濑溪河国家湿地公园实施了水质保护、水质净化、鸟类生境保护、河岸多塘系统恢复、河岸林网络系统修复、河岸廊道修复等保护与恢复工程,取得了显著的湿地保护成效,为西南地区丘区河流湿地公园的保护与恢复提供了重要依据。  相似文献   

14.
Water level fluctuation of is an important ecological character of lakes in monsoon climate zone.It is the key driver to seasonal change of the wetlands and associated habitats,which provide vital inhabiting conditions for different species in summer and winter,or,wet season and dry season.Due the hydrologic regime changes in the recent years after the operation of Three Gorges Dam,in 2012,the government of Hunan province proposed Chenglingji Hydraulic Project,aiming at water level control in dry season at Chenglingji,where the outlet of Dongting Lake located.Through different operations on water retreat process,five scenarios on the water level control from 21 m to 24 m were set in the plan.The potential ecological impacts of the project are under enormous public concern.To analyze potential impacts from different scenarios of water level control on the wetlands,this paper studied the topography of Dongting Lake bed and wetlands in dry season,by using Digital Elevation Model(DEM)and 15 images from HJ satellite and 1 image from Landsat TM.The wetlands at water levels of 19 m to 27 m were analyzed.The study revealed that there were 4 terrain steps on Dongting Lake bed from the West Dongting Lake to East Dongting Lake.Water level control at Chenglingji would increase area of open water in East Dongting Lake and Hengling Lake areas,while its effect on South Dongting Lake and West Dongting Lake areas due to higher terrain was weaker.Particularly,the area percentages of South Dongting Lake area did not change with water level fluctuation,due to its 2 elevation steps.The area percentages of various types of the wetlands in Dongting Lake area during the processes of water level rising and retreating were quite different,even in the relatively close water level interval.The retreating area of open water in autumn was larger than that during the spring flooding.The 23 m was the key water level,a turning point of the area change of the wetlands in Dongting Lake area.Areas of open water,mudflat,meadows and their percentages changed significantly at water levels above 23 meters,with increasing of open water area and shrinking of meadow area,their areas would decrease 30 000 ha.As the key habitats for wintering geese,the area of meadows was from near 70 000 ha to 10 000 ha.Among 5 scenarios,the impact of the scenario at 21 m elevation on wetlands was the weakest.However,water level dropping was still postponed than that of natural hydrological process in the scenarios.It resulted in longer inundation of large area of lakebed at elevation of 22-23 m,increasing habitats for aquatic biodiversity but reducing area of the meadows,where is the key habitat for wintering geese.All the other water level control scenarios would cause large area of inundation of lakebed in dry season and dramatic change of wetlands.To maintain the natural wetlands in Dongting Lake area,the Chenglingji Hydraulic Project should be considered in a more cautious way and further researches were needed on the response of aquatic biodiversity and wintering water birds.  相似文献   

15.
基于乡镇单元选取具有代表性的人为干扰社会经济指标,计算怒江流域云南段2005、2010、2015年各乡镇人为干扰指数(HDI-Human Disturbance Index),分析了怒江流域云南段乡镇单元、已建自然保护区和相关保护优先区的人为干扰强度变化。结果表明:2005年以来,研究区乡镇HDI整体呈增长趋势,低和较低HDI乡镇数量减少但整体HDI增长,中度和较高HDI乡镇数量和整体HDI都增加,高HDI乡镇数量增加不大但整体HDI增幅最大;各级自然保护区人为干扰强度都呈增加趋势,国家自然保护区增幅最大达到较低人为干扰强度,省级自然保护区一直为较低人为干扰强度,县级自然保护区处于中度人为干扰强度,需加强永德大雪山、龙陵小黑山、临沧澜沧江、南捧河4个自然保护区所涉中度及以上HDI乡镇的人为干扰管理,避免人为干扰压力的大幅增加;研究区分布的3类保护优先区人为干扰强度缓慢增长,至2015年基本为低或较低人为干扰状态,有优化的空间和潜力;建议在怒江流域云南段上游增设碧罗雪山自然保护区,在下游考虑已建自然保护区外部空间扩展和自然保护区斑块间的生态廊道构建,在其他中度或较高HDI乡镇可根据保护需求开展迁地保护或自然保护小区建设。  相似文献   

16.
As a complex social ecosystem network, the area along the Grand Canal has a prominent contradiction between the demand for economic development and the protection of natural resources, which means that there is an urgent need for ecological restoration and environmental protection. Using ArcGIS, Conefor, Linkage Mapper and other software platforms, this paper developed an integrated analysis framework, through loose coupling of the attribute-function-structure index system and a series of methods such as the least cost path, circuit theory and moving window search. Based on the framework, we resolve a series of scientific issues in developing regional ecological networks, such as the selection of ecological sources, the simulation of potential ecological corridors, the assessment of the importance of ecological sources and corridors, and the identification of key ecological nodes. Moreover, an overall conservation pattern of the regional ecological network is constructed. The results show that: 1) A total of 88 important ecological sources are identified in the study area. The patches with high centrality values are mainly concentrated in the southern mountainous area and the areas with abundant rivers and lakes. 2) A total of 138 important ecological corridors are identified, and they are not evenly distributed. Extremely important corridors mostly appear between important patches, and very important corridors are mainly distributed in the central area. 3) Fifteen ecological pinch points are extracted, and they are mainly concentrated in the northern part of the study area and eastern Zhejiang Province. The barriers are mostly concentrated in the southern and northern parts of the study area. 4) Combining the demands of ecological protection and socioeconomic development, we propose an overall ecological conservation pattern of “one axis, five sections, multiple cores and multiple nodes” to effectively guide future ecological restoration work. These results can provide a useful reference and spatial guidance for decision makers in terms of ecological restoration and cooperation on cross-regional ecological protection along the Grand Canal.  相似文献   

17.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following: (1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010. (2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland. (3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dramatically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted. (4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological- oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed. (5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

18.
气候变化和人类活动通过改变物种生境而影响物种多样性。小白额雁是长江流域中下游的一种具有较高生态价值的食草型濒危候鸟,受气候变化和人类活动威胁。本文以小白额雁为代表性物种,定量分析了气候变化对长江流域中下游候鸟潜在生境及适宜性空间分布格局的影响。采用Maxent模型模拟了当前情景和全球环流模型(GCMs)气候场景下小白额雁潜在生境及其适宜性分布。研究结果表明,小白额雁分布特征与其栖息地周边植物分布呈显著相关关系;运用Maxent模型模拟小白额雁六种主要食源植物的分布特征,并将其结果作为环境变量,将显著改善小白额雁潜在生境及其适宜性模型的模拟性能;在两种典型浓度情景(RCP 2.6和RCP8.5)下,2070年小白额雁潜在生境适宜性面积将下降。为应对气候变化对小白额雁的影响,应采取更加合理的管理措施和保护政策,包括调整保护区的大小、形状和用途。  相似文献   

19.
杨新军  张慧  王子侨 《地理科学》2015,35(8):952-959
人地系统及其脆弱性是地理学研究的核心内容。近年来,脆弱性研究对象逐渐由生态系统转变到人地耦合系统即社会-生态系统,由于该耦合系统具有多尺度扰动和多利益主体并存的特点,且易受不确定性的干扰,目前关于系统脆弱性评价方法难以解释系统的不确定性。选择榆中县中连川乡作为研究区域,尝试将社会与生态环境信息结合起来进行脆弱性研究。首先运用情景分析方法,确定当地社会-生态系统未来的情景变化的关键驱动力为干旱气候和政府决策,筛选出在两者组合下系统未来情景概率较高的3种情景S1(干旱减缓,有政策支持),S2(干旱缓解,无政策支持)和S3(干旱加剧,有政策支持)。通过实地调查,对多利益主体(农户、管理者和科研工作者)进行情景访谈,对不同利益主体对不同情景的可接受程度进行测度,结合社会-生态矩阵分析,得到不同利益主体对系统未来的可接受程度,以此判断利益主体在未来变化情景下的脆弱度。结果显示,在S1情景下,当地农民和管理者的脆弱性较低;在S2和S3情景下,当地农民和管理者的可接受度是负向的,表明其脆弱性增加,干旱加剧是影响当地未来发展的决定因素,政策支持在一定程度上弥补干旱带来的消极影响。根据不同利益主体的态度,提出未来当地发展的相关政策建议。  相似文献   

20.
黄土丘陵小流域土地利用变化对水土流失的影响   总被引:80,自引:3,他引:80  
傅伯杰  邱扬  王军  陈利项 《地理学报》2002,57(6):717-722
在土壤侵蚀模型LISEM (Limburg Soil Erosion Model) 校正的基础上,模拟了陕北黄土丘陵沟壑区大南沟小流域5种土地利用方案的水土流失效应,旨在探讨土地利用变化对流域出口水土流失的影响。研究结果表明:流域出口的洪峰流速、径流总量和侵蚀总量的大小顺序为:1975年>1998年>25度退耕>20度退耕>15度退耕。1975年和1998年25度以上的陡坡耕地和休闲地均退耕还林还草,这2种土地利用格局的径流和侵蚀模拟值都显著大于3种退耕方案。在3种退耕方案中,20度和15度以上的陡坡耕地和休闲地逐步转变为果园/经济林地,3种退耕方案之间的水土流失差异不显著。相对于1975年土地利用来说,1998年土地利用能降低洪峰流速、径流量和侵蚀量约5%~10%;3种退耕方案的减流减沙效益更加显著,可以降低洪峰流速、径流量和侵蚀量约40%~50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号