首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alluvial channel has always adjusted itself to the equilibrium state of sediment transport after it was artificially or naturally disturbed.How to maintain the equilibrium state of sediment transport and keep the river regime stable has always been the concerns of fluvial geomorphologists.The channel in the middle and lower reaches of the Yangtze River is characterized by the staggered distribution of the bifurcated river and the single-thread river.The change of river regime is more violently in the bifurcated river than in the single-thread river.Whether the adjustment of the river regime in the bifurcated river can pass through the single-thread river and propagate to the downstream reaches affects the stabilities of the overall river regime.Studies show that the barrier river reach can block the upstream channel adjustment from propagating to the downstream reaches;therefore,it plays a key role in stabilizing the river regime.This study investigates 34 single-thread river reaches in the middle and lower reaches of the Yangtze River.On the basis of the systematic summarization of the fluvial process of the middle and lower reaches of the Yangtze River,the control factors of barrier river reach are summarized and extracted:the planar morphology of single-thread and meandering;with no flow deflecting node distributed in the upper or middle part of the river reach;the hydraulic geometric coefficient is less than 4;the longitudinal gradient is greater than 12‰,the clay content of the concave bank is greater than 9.5%,and the median diameter of the bed sediment is greater than 0.158 mm.From the Navier-Stokes equation,the calculation formula of the bending radius of flow dynamic axis is deduced,and then the roles of these control factors on restricting the migration of the flow dynamic axis and the formation of the barrier river reach are analyzed.The barrier river reach is considered as such when the ratio of the migration force of the flow dynamic axis to the constraint force of the channel boundary is less than 1 under different flow levels.The mechanism of the barrier river reach is such that even when the upstream river regime adjusts,the channel boundary of this reach can always constrain the migration amplitude of the flow dynamic axis and centralize the planar position of the main stream line under different upstream river regime conditions,providing a relatively stable incoming flow conditions for the downstream reaches,thereby blocking the upstream river regime adjustment from propagating to the downstream reaches.  相似文献   

2.
In this study, data measured from 1955–2016 were analysed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam(TGD) after the impoundment of the dam. The results highlight the following facts:(1) for the same flow, the low water level decreased, flood water level changed little, lowest water level increased, and highest water level decreased at the hydrological stations in the downstream of the dam;(2) the distribution of erosion and deposition along the river channel changed from "erosion at channels and deposition at bankfulls" to "erosion at both channels and bankfulls;" the ratio of low-water channel erosion to bankfull channel erosion was 95.5% from October 2002 to October 2015, with variations between different impoundment stages;(3) the low water level decrease slowed down during the channel erosion in the Upper Jingjiang reach and reaches upstream but sped up in the Lower Jingjiang reach and reaches downstream; measures should be taken to prevent the decrease in the channel water level;(4) erosion was the basis for channel dimension upscaling in the middle reaches of the Yangtze River; the low water level decrease was smaller than the thalweg decline; both channel water depth and width increased under the combined effects of channel and waterway regulations; and(5) the geometry of the channels above bankfulls did not significantly change; however, the comprehensive channel resistance increased under the combined effects of riverbed coarsening, beach vegetation, and human activities; as a result, the flood water level increased markedly and moderate flood to high water level phenomena occurred, which should be considered. The Three Gorges Reservoir effectively enhances the flood defense capacity of the middle and lower reaches of the Yangtze River; however, the superposition effect of tributary floods cannot be ruled out.  相似文献   

3.
The anastomosing river that is present within the First Great Bend of the Yellow River is different from other sand-bedded rivers of this type because it contains gravel-bedded materials. It is therefore important to determine whether, or not, the specific characteristics of this anastomosing river are similar to those seen in sand-bedded forms, including the characteristics of erosion and deposition, and the stability of channel and interchannel wetlands. Four Landsat images from 1990, 2001, 2013, and 2016 alongside two Google Earth(GE) images from 2011 and 2013 were utilized in this study in tandem with field sampling and observations to select a 12 km main channel length section of the Qihama reach anastomosing river. This section was then used to determine variations in channel planform and sedimentary characteristics over a 26 year period. The results of this study show that this gravel-bedded anastomosing river has exhibited a high degree of stability overall, and that there has been no obvious channel and wetland bank erosion and deposition. Data also show that over the 26 years of this study, anastomosing belt area increased by 2.43%, while the ratio of land to water area remained almost equal. The number of wetlands has also increased along this river section at a rate as high as 62.16% because of the fragmentation of some small interchannel examples, while the talweg has alternately migrated to either the left or right over long periods of time at a relatively stable rate. Indeed, as a result of the migration of this line, there has been significant turnover in the number of islands within the main channel while bank shift has occurred at a rate of about 5 m/yr. The numerous anastomosing channels within this river section remained very stable over the course of this study, characterized by a mean annual migration rate of just 1 m/yr, while the sediments in bank columnar sections are mainly composed of fine sands or silts with a relatively high clay content. The sediment grain-size distribution curve for this river section contains multiple peaks, distinct from the muddy sediments within bank columnar sections from sand-bedded anastomosing rivers. The dense vegetation within riparian and interchannel wetlands alongside this river reach has also protected anastomosing channels from erosion and maintainedtheir stability, a key feature of this gravel-bedded system.  相似文献   

4.
The sand dredging and its impacts on riverbed evolution and tidal dynamic change in the lower reaches and delta of the Dongjiang River are examined in this paper. The large amount of sand, totally 3.32 billion m^3 from 1980 to 2002, was mined from the riverbeds of the lower reaches and delta of the Dongjiang River. Increasing of the channel capacity, lowering of the average riverbed elevation, deepening of the water depth and decreasing of the longitudinal riverbed gradient are the main effects on the riverbed evolution brought by the large amount of sand dredging. Under the strong sand dredging and associated significant riverbed deformation, the notable changes of the tidal dynamic in the lower reaches and delta of the Dongjiang River occurred, including: (1)in the upper reaches of the Dongjiang River delta and lower reaches of the Dongjiang River, tidal level dropped apparently, tidal range widened, flood tidal duration became longer, amplitudes for major tidal components became bigger and tidal dynamics intensified; (2) tidal wave spread faster; and (3) the limits of the tidal level, tidal current and salt water moved upstream.  相似文献   

5.
Gu  Zhenkui  Fan  Hui  Yang  Kun 《地理学报(英文版)》2020,30(9):1495-1506
River incision and drainage reorganization have an important impact on the site selection of many major projects including city,road and others,and are the key issues of Quaternary environmental changes.Studies of river incision and river-network adjustment have traditionally been based on extensive field evidence,such as sediment age and beheaded river system.The Buyuan River basin is a large sub-basin of the upper Lancang-Mekong,with high mountains and extremely active erosion.The latter affects the preservation of the Quaternary period sediments leading to difficulties in understanding the main evolution characteristics of the basin.This study investigates differences in the equilibrium state of the longitudinal profile,infers incision rates,and evaluates drainage divide migration timelines using the stream-power incision model,the latest morphological dating,and Chi-plots(χ–z) based on digital elevation models(DEMs) on the GIS software platform.The final results show that two significant erosion base-level decreases occurred in the Late Pleistocene at least.The incision rate of the mainstream might have been 0–2.99 mm/yr since 100 ka BP and 0–3.28 mm/yr since 46 ka BP.The Chi-values across the divides suggest that space limited(or constrained) river reorganization and that there is no severe reorganization in the basin;the imbalance of traceable erosion only exists in local areas.The main driving force for the geomorphologic evolution of the Buyuan River basin is likely climate fluctuations rather than strong tectonic uplift since the Late Pleistocene.  相似文献   

6.
1951-2002年长江流域降水特征   总被引:2,自引:0,他引:2  
The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations‘ data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.  相似文献   

7.
Deep-water navigation channels in the tidal reaches of the lower Yangtze River are affected by water and sediment fluxes that produce complex shoals and unstable channel conditions. The Fujiangsha reach is particularly difficult to manage, as it has many braided channels within the tidal fluctuation zone. In this study, hydrologic and topographic data from the Fujiangsha reach from 2012 to 2017 were used to examine the variations in deposition and erosion, flow diversion, shoals, and channel conditions. Since the Three Gorges Dam became operational and water storage was initiated, the Fujiangsha reach has shown an overall tendency toward erosion. Channels deeper than 10 m accounted for 83.7% of the total erosion of the Fujiangsha reach during 2012–2017. Moreover, the dominant channel-forming sediments have gradually changed from suspended sediments to a mixed load of suspended and bed-load sediments. Deposition volumes of these sediments has varied significantly among different channels, but has mainly occurred in the Fubei channel. Furthermore, periodic variations in the Jingjiang point bar have followed a deposition-erosion-deposition pattern, and the downstream Shuangjian shoal mid-channel bar has been scoured and shortened. Approximately 44.0% of the bed load from the upstream Fujiangsha reach is deposited within the 12.5-m deep Fubei channel. The increased erosion and river flow from the Jingjiang point bar and the Shuangjian shoal during the flood season constituted 59.3% and 40.7%, respectively, of the total amount of siltation in the Fubei channel.  相似文献   

8.
This paper aims to compare the geochemical characteristics of loess-paleosol sequences in the upper reaches of the Hanjiang and Weihe river valleyswhich are located in the semi-humid temperate zone and humid subtropical zonerespectively. The Mituosi(MTS) profile in the upper reaches of the Hanjiang River valley and the Yaohecun(YHC) profile in the Weihe River valley were selected for this comparative research. The stratigraphic characteristicscompositionchemical weathering intensityleaching rates of Ca and Namobility of major elementsand transport features of Na and Fe were analyzed with respect to depth and compared between the two profiles. This study reached the following conclusions.(1) The composition of the loess-paleosol sequences in two regions are quite similar to the average composition of the upper continental crust(UCC)indicating that the loess in the two regions came from multiple sources and was mixed well. Thereforethe loess in the two regions is considered aeolian loess.(2) Compared with the loess-paleosol sequence in the Weihe River valleythe loess-paleosol sequence in the upper reaches of the Hanjiang River valley features a darker color; a higher chemical index of alteration(CIA) value; higher leaching rates of Na and Ca; higher migration ratio(relative to K) of AlSiMgand Na; and lower migration ratio of Fe and Ca. This evidence indicates that the loess-paleosol sequence in the humid subtropical environment experienced stronger chemical weathering intensity than the loess-paleosol sequence in the semi-humid temperate zone.(3) Both the YHC profile and MTS profile record a period of climate deterioration at 6000–5000 a BP. The period punctuated the mid-Holocene Climatic Optimum(8500–3100 a BP) in the study area.  相似文献   

9.
The blocking or reversing effect of the downstream trunk river on its tributary lakes is an essential aspect of river-lake hydraulics.To measure how and the extent to which a trunk river can influence its tributary lakes,we made a case study in Changjiang River and one of its tributary lakes,Lake East Dongting(Lake ED)during a 35-year study period(1980–2014).Specifically,we investigated Lake ED’s discharge ability into Changjiang River using stage-discharge relationship curves,and hence the changes of the lake discharge ability under different hydrologic conditions of the Changjiang River.The results show that (1) the Changjiang River does exert a huge impact on the water regimes of Lake ED.And this impact varies seasonally.A variation of 3000in Changjiang River’s runoff would change the lake water level by about 1.1 min dry seasons,by 0.4 min wet seasons,and by 0.6 m during severe summer floods.(2)Changes in the Changjiang River runoff triggered by the Three Gorges Dam since 2003 have led to dramatic water regime variations in Lake ED.Other factors,including reduction of lake inflow and the lake bed erosion,also exacerbated the water regime variations in Lake ED.  相似文献   

10.
长江中游马口-田家镇河段40年来河道演变   总被引:2,自引:1,他引:1  
Quantitative analysis was performed on the filling-scouring process for the river reach within Makou and Tianjiazhen, the middle Yangtze River with the help of GIS and DEM techniques. The research results indicate that the river reach between Makou and Tianjiazhen was dominated by the scouring process, and the magnitude of scouring is increasing over time. The intensity of scouring process is more in the deep and narrower river reach than shallower and wider ones. The river reach in the Makou and Tianjiazhen river knot is in fre-quent scouring and filling process, however the river reach upper to the Makou and lower to the Tianjiazhen river knot is in moderate scouring and filling process. The river reach just upstream or downstream to the river knot (e.g. Makou and Tianjiazhen river knot in this research) is dominated by filling process and the river reach in the river knot is dominated by the scouring process. Research results indicate no changes in the boundary of the river but the scouring and the filling magnitude in specific river channel is strong. The filling and the scouring process of the study river reach is greatly impacted by the sediments and water from the upstream of the study river reach. The construction of the Three Gorges Dam just upstream to Yichang will cause further decrease of the release of the sediment load to the middle and the lower Yangtze River basin, which will further intensify the scouring process of the river channel in the study river reach.  相似文献   

11.
Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC.  相似文献   

12.
The changing pattern of the Lower Yellow River (LYR) obtained from the traditional studies, which mainly did literal analysis based on historical documents related to the LYR are too macroscopic and absent of intuitiveness. This paper integrates all the records in historical documents related to course shift, flood and overflow of the last 3000 years and stores them in a GIS database. Then, all the data will be visualized in the form of map, which is helpful to show and understand the rules those events conform more intuitively and accurately. Taking these data as foundation, this study summarizes characteristics of the LYR’s courses and influence scope, and classifies them both into three types; divides the flow directions of the LYR’s courses into two periods, and proposes its changing pattern; concludes the characteristic of diversion points of courses shift events; calculates the velocity of courses shifts, gradient and sinuosity, and analyzes their changing patterns. Finally, this study classifies factors that may influence the occurrence of a course shift into two types: the internal factors, such as sediment rate, gradient and sinuosity of the river, and the external factors, such as precipitation and human activities.  相似文献   

13.
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.  相似文献   

14.
The spatial distribution of valley setting (laterally-unconfined, partly-confined, or confined) and fluvial morphology in the source region of the Yangtze and Yellow Rivers is contrasted and analyzed. The source region of the Yangtze River is divided into 3 broad sections (I, II and III) based on valley setting and channel gradient, with the upstream and downstream sections being characterized by confined (some reaches partly-confined) valleys while the middle section is characterized with wide and shallow, laterally-unconfined valleys. Gorges are prominent in sections I and III, while braided channel patterns dominate section II. By contrast, the source region of the Yellow River is divided into 5 broad sections (sections I-V) based on valley characteristics and channel gradient. Sections I, II and IV are alluvial reaches with mainly laterally-unconfined (some short reaches partly-confined) valleys. Sections III and V are mainly confined or partly-confined. Greater morphological diversity is evident in the source region of the Yellow River relative to the upper Yangtze River. This includes braided, anabranching, anastomosing, meandering and straight alluvial patterns, with gorges in confined reaches. The macro-relief (elevation, gradient, aspect, valley alignment and confinement) of the region, linked directly to tectonic movement of the Qinghai-Tibet Plateau, tied to climatic, hydrologic and biotic considerations, are primary controls upon the patterns of river diversity in the region.  相似文献   

15.
The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "hanging river". According to the characteristics of the dike-break flood of the Yellow River, this paper has simulated, in six different scenarios, the dike-break flood routing by inputting the terrain data, typical historical flood data and land use data of study area to two-dimensional unsteady flow model. The results show that: firstly, the routing process of flood will occupy other rivers on the way and return to the rivers after reaching the lower reaches; secondly, in the same river reach, flood inundating area of north band is bigger than that at corresponding location of south bank under the same historical flood; thirdly, it is different in the degree of flood inundation in different regions due to different geographical locations in flood plain; fourthly, the area of mainstream where flood is deep and flow velocity is quick is relatively smaller, but the area of non-mainstream, where flood is shallow and flow velocity is slow, is relatively big; and finally, the possible influenced area of the dike-break flood is 141,948 km^2.  相似文献   

16.
In the course of stream development, each stream and its tributaries tend toincrease their length by headward erosion, or in other words to enlarge their catchment area. A shifting of divide and eventually a struggle for existence by which a part or the whole of tne stream will be diverted or captured by the otherwill be resulted. This phenomena is called in physiography, river capture or river piracy.  相似文献   

17.
In the course of stream development, each stream and its tributaries tend toincrease their length by headward erosion, or in other words to enlarge their catchment area. A shifting of divide and eventually a struggle for existence by which a part or the whole of tne stream will be diverted or captured by the otherwill be resulted. This phenomena is called in physiography, river capture or river piracy.  相似文献   

18.
长江口水域悬沙浓度时空变化与泥沙再悬浮   总被引:4,自引:0,他引:4  
A detailed analysis of suspended sediment concentration (SSC) variations over a year period is presented using the data from 8 stations in the Yangtze River estuary and its adjacent waters, together with a discussion of the hydrodynamic regimes of the estuary. Spatially, the SSC from Xuliujing downwards to Hangzhou Bay increases almost constantly, and the suspended sediment in the inner estuary shows higher concentration in summer than in winter, while in the outer estuary it shows higher concentration in winter than in summer, and the magnitude is greater in the outer estuary than in the inner estuary, greater in the Hangzhou Bay than in the Yangtze River estuary. The sediments discharged by the Yangtze River into the sea are resuspended by marine dynamics included tidal currents and wind waves. Temporally, the SSC shows a pronounced neap-spring tidal cycle and seasonal variations. Furthermore, through the analysis of dynamic mechanism, it is concluded that wave and tidal current are two predominant factors of sediment resuspension and control the distribution and changes of SSC, in which tidal currents control neap-spring tidal cycles, and wind waves control seasonal variations. The ratio between river discharge and marine dynamics controls soatial distribution of SSC.  相似文献   

19.
There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem. Groundwater has become one of main resources of fresh water in the HRB. In this paper, temporal and spatial variations of groundwater in the HRB are estimated by the Gravity Recovery and Climate Experiment (GRACE) satellites. Our analysis shows that groundwater storage in the HRB reaches its highest in the summer of 2005, and then begins to decline in the following years and reaches steady status in 2008. Spatially, groundwater shows a decline in the upper HRB in the first two years and a slight increase in the following years, while this phenomenon is reversed in the middle HRB where groundwater slightly increases in 2005 and then declines in the following three years. In the lower HRB, GRACE detects a continual increase in the full six-year period. This approach is proven successful when employed in the HRB and thus offers a new insight into monitoring groundwater variations in a river basin with limited or even without any observed data.  相似文献   

20.
The water of Bosten Lake was released to lower reaches of the Tarim River for 5 times from 2000 to 2002. The changes of total dissolved solid (TDS) and the major ions (SO4^2-, Cl^-, Na^-,Ca^2 , Mg^2- and HCO3^- ) were analyzed during this period. It was found out that TDS and the concentrations of the major ions initially and quickly increased and then decreased, but finally increased again. These changes were different at different distances from the river, which indicated that the groundwater changes relied on the distance from the river. In addition, the salt in groundwater was only diluted but not removed by the water. It was suggested that ecological measures should be sought to really promote the quality of the groundwater at the lower reaches of the Tarim River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号