首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
张雅乐  俞永强 《大气科学》2016,40(1):176-190
本文选用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)发展的全球海洋—大气—陆面气候系统模式(FGOALS)的4个版本g2.0、s2.0、g1.1和g1,利用模式的长时间积分结果,结合观测、再分析资料比较、评估模式对太平洋年代际变率的模拟能力,并通过对海气相互作用及其海洋动力过程分析,探讨了模式中太平洋年代际振荡形成机制.研究发现,FGOALS 模式g2.0和s2.0版本对太平洋年代际振荡(PDO/IPO)的模拟能力优于 g1.1和g1.模式中太平洋年代际变率的正反馈过程与Bjerknes(1969)提出的海气相互作用正反馈机制有关,其负反馈则主要与海洋内部动力过程有关.太平洋异常经向热量输送将热带与中纬度海洋联系在一起,可以抑制正反馈作用,但无法使得年代际振荡变化位相发生反转;FGOALS模式中,热带海表温度(SST)暖距平信号通过大气桥影响热带外大气环流,在海气作用下,热带与热带外海洋次表层分别以Kelvin 波和Rossby 波的形式传播,使得冷暖位相反转,4个版本均能再现这种负反馈机制.但不同版本Rossby波所处的纬度不同,太平洋SST异常年代际变化信号最明显的范围越宽,则由此激发的Rossby 波便更为偏北,纬度越高Rossby 波西传的时间也越长,PDO/IPO的周期与其SST异常的经向尺度密切相关.  相似文献   

2.
利用WRFDA-FSO(Forecast Sensitivity to Observation)系统,统计分析2009年和2010年5—10月青藏高原东侧常规地面和高空观测对WRF模式预报误差的贡献。结果表明:地面观测资料各要素中,温度场对模式预报误差贡献最大,风场、气压和水汽场的贡献相对小;四川东部、广西大部和云南南部边缘地区的资料对改进预报产生正贡献较大。高空资料各要素中,温度场对模式预报误差贡献最大,其次是水汽场,风场贡献最小;高空站资料对改进预报产生正贡献较大的区域主要分布在云南大部、贵州西部边缘和广西西北部边缘地区。依据误差统计结果,剔除对改进预报产生负贡献较大的地面和高空站资料后,模式降水和温度预报效果有所改善。  相似文献   

3.
一个海气耦合模式模拟的云辐射过程   总被引:2,自引:0,他引:2  
汪方  丁一汇  徐影 《气象学报》2005,63(5):716-727
利用NCC/IAP T63海气耦合模式进行了20 a积分,详细分析了模式对云量及其辐射影响的模拟能力。结果表明,模式能够模拟出云量分布的基本特征,但同ISCCP卫星观测资料及ERA再分析资料相比还存在较大的差距,总体表现为模拟的云量偏小,尤其是海洋上部分地区出现了异常的低值区。通过对云量方案的改进,明显改善了两大洋东岸、夏半球副热带到中纬度海洋上空低云的模拟。但模式对热带印度洋到西太平洋地区云量的模拟仍然存在明显的偏差,这主要是由于模式对该地区强对流云模拟能力差,造成该地区高云模拟存在较大的误差。对辐射及其云辐射强迫的分析表明,模式对长波及其云辐射强迫的模拟要明显好于短波。短波辐射模拟的偏差主要是由于短波云辐射强迫模拟过小、耦合模式对积雪和海冰模拟较差、以及未考虑气溶胶的影响等原因共同引起的;而长波辐射模拟的差距主要是云量以及下垫面温度模拟不足造成的。相应于云量方案的改进,两大洋东岸、夏半球副热带到中纬度海洋上辐射(尤其是短波辐射)的模拟有了明显的改善,这也明显改进了这些地区的净辐射模拟。  相似文献   

4.
张丁玲  黄建平  刘玉芝  陈斌  张磊 《高原气象》2012,31(5):1192-1202
利用2001年11月—2005年10月"云与地球辐射能量系统(CERES)"辐射和云资料SYN(Syn-optic Radiation Fluxes and Clouds),分析了青藏高原(下称高原)地区不同高度云辐射强迫的时空变化特征。结果表明:(1)高原整体为云强迫正、负值的过渡区域,这种过渡性有显著的季节差异和区域划分。高原东南部表现出较强的冷却效应,其西部和东北部干旱区在冬、春季表现为较弱的加热效应。(2)高云、高的中云和低的中云对云短波辐射强迫的季节变化都有贡献,其中中云是导致区域差异的主要因素;云长波辐射强迫的区域差异不明显,但季节差异显著,这主要是由高的中云和高云的变化引起的,且云量是主要的影响因子,高云云量虽小但其影响不可忽视。(3)高云在高原地区产生净加热效应,高的中云既产生加热作用也产生冷却作用,低的中云产生净冷却效应。(4)云短波辐射强迫在云辐射强迫的日变化中仍然占主导地位,日变化的区域差异主要是由云量引起的。白天,在云短波辐射强迫的日变化中,低的中云贡献更大。高云对云长波辐射强迫的日变化贡献主要在晚上,低的中云在夜间对云长波辐射强迫有抑制作用。  相似文献   

5.
从描述南、北半球间大气经向质量传输的角度人手,考察IPCC第4次评估报告提供的8个AMIP大气环流模式对越赤道质量通量输送的模拟性能。结果表明:NCAR、MPI和UKMO模式模拟出的越赤道整层大气质量通量与观测大体相一致;MIROC3模拟的整层大气质量通量年循环与观测结果相去甚远,尤其在夏季模拟出较强的虚假向北大气质量输送;IAP模拟的整层大气质量通量年循环方向与观测结果在7个月份中相反;把垂直大气分为4层.各模式对700 hPa以下(I_1)和300-70 hPa(I_3)两层质量通量的模拟能力普遍较好;对700-300 hPa层(I_2)质量通量模拟结果偏差较大;除MIROC3外,其余模式基本能够模拟出70-10 hPa(I_4)大气质量通量的季节变化.显然,不仅南、北半球间大气存在质量交换,越过其他纬度同样存在着经向大气质量输送,无论冬季、夏季还是年平均,各模式对越过其他纬度(60°S-60°N)经向大气质量输送的模拟结果与观测差异明显。整体权衡,UKMO_HADGEMl在模拟越赤道大气质量通量方面表现突出,MPI_ECHAM5模式优势较明显;NCAR、GISS和GFDL 3个模式在某些压力层内具有较好的模拟水平;MIROC模式对整层、700-300 hPa层的模拟能力较低,而对700 hPa以下层和300-70 hPa层的模拟水平较高;IAP_FGOALS和CNRM模式在模拟越赤道大气质量通量方面存在一定的不足.  相似文献   

6.
郭准  周天军 《大气科学》2012,36(5):863-878
1997/98年强E1 Ni(n)o背景下西太平洋暖池区云辐射强迫的变化,表现出诸多不同于以往的特征,已经成为检验气候模式性能的一个重要标准.本文基于卫星资料,分析了大气环流模式GAMIL1.0和2.0版对上述现象的模拟能力.结果表明,GAMIL1.0模式对热带地区云辐射特征分布,尤其对西太平洋暖池区的长(短)波云辐射...  相似文献   

7.
青藏高原东坡陡峭地形区是气候模式陆地降水模拟偏差的大值区,且这一偏差长期未得到有效改善.基于17个参加国际耦合模式比较计划第六阶段(CMIP6)的全球气候模式的日降水结果,评估了当前最新一代的气候模式对青藏高原东坡地区2000—2014年暖季(5—9月)降水气候态及其季节内演变的模拟能力.结果表明:高原东坡降水正偏差存...  相似文献   

8.
LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较   总被引:4,自引:8,他引:4  
郭准  吴春强  周天军 《大气科学》2011,35(4):739-752
通过与ISCCP (International Satellite Cloud Climatology Project)逐月辐射资料的比较,本文从气候态和对ENSO响应的角度,评估了国内的三个大气环流模式BCC AGCM、IAP GAMIL和IAP SAMIL对云辐射强迫的模拟能力,讨论了影响模拟结果不确定性的因素.分...  相似文献   

9.
10.
东亚季风气候对青藏高原隆升的敏感性研究   总被引:24,自引:0,他引:24  
刘晓东  焦彦军 《大气科学》2000,24(5):593-607
青藏高原隆起是东亚季风形成演化的决定因子之一.利用GCM(大气环流模式)完成的一系列改变青藏高原地形高度的数值试验说明,东亚季风气候变化非常敏感地响应于高原隆升.在高原隆升达到现代高度的一半之前,东亚大约30°N以北地区近地面冬夏反向意义下的季风现象是不存在的.高原隆升对东亚冬季风的影响远大于对夏季风的影响.即使没有青藏高原,仅受海陆热力对比的作用,中国东部地区夏季已能出现偏南风;然而只有在青藏高原存在,且达到一定高度的情况下,东亚北方地区冬季才能盛行偏北风.从温湿状况看,大约长江以北的东亚北方季风强度随高原高度上升几乎呈线性增加,冬夏温度对比不断加大,降水也越来越向夏季集中.但长江以南的东亚南方季风和印度季风与此明显不同,前者对高原隆升具有非线性响应,而后者在高原隆升过程中变化不大.  相似文献   

11.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

12.
李伊吟  智海  林鹏飞  刘海龙  于溢 《大气科学》2018,42(6):1263-1272
海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。  相似文献   

13.
谷艳茹  范广洲 《气象科技》2021,49(3):372-379
基于2014-2018年3-9月GPM(Global Precipitation Measurement)的数据,对青藏高原地区的深对流系统的时空分布及降水特征进行研究,结果表明:青藏高原主体地区(25°~40°N,70°~105°E)的深对流系统主要集中分布在中部、东部和南部地区,对流强度与东亚季风区其他区域相比较小...  相似文献   

14.
The seasonal and diurnal variations of cloud systems are profoundly affected by the large-scale and local environments. In this study, a one-year-long simulation was conducted using a two-dimensional cloud-resolving model over the Eastern Tibetan Plateau (ETP) and two subregions of Eastern China: Southern East China and Central East China. Deep convective clouds (DCCs) rarely occur in the cold season over ETP, whereas DCCs appear in Eastern China throughout the year, and the ETP DCCs are approximately 20%?30% shallower than those over Eastern China. Most strong rainfall events (precipitation intensity, PI> 2.5 mm h?1) in Eastern China are related to warm-season DCCs with ice cloud processes. Because of the high elevation of the ETP, the warm-season freezing level is lower than in Eastern China, providing favorable conditions for ice cloud processes. DCCs are responsible for the diurnal variations of warm-season rainfall in all three regions. Warm-season DCCs over the ETP have the greatest total cloud water content and frequency in the afternoon, resulting in an afternoon rainfall peak. In addition, rainfall events in the ETP also exhibit a nocturnal peak in spring, summer, and autumn due to DCCs. Strong surface heat fluxes around noon can trigger or promote DCCs in spring, summer, and autumn over the ETP but produce only cumulus clouds in winter due to the cold and dry environment.  相似文献   

15.
青藏高原云型的卫星遥感判别方法研究   总被引:3,自引:2,他引:3       下载免费PDF全文
梁萍  陈葆德  汤绪 《高原气象》2010,29(2):268-277
采用1983—1996年CDIAC全球云观测报告集ECRA资料和ISCCP卫星遥感资料,分析了青藏高原四季云型出现频率的气候统计特征,并根据各云型的光学厚度—云顶气压分布特征,提出了基于光学厚度—云顶气压联合分布频率的青藏高原云型判别方法。结果表明,高云Cid及低云Sc、Cu、Cb是各季节青藏高原上空出现的代表云型,其它云型的出现概率小得多。高云在冬、春季节的出现概率大于秋、夏季节;中低云则相反。青藏高原上空的云在春、夏季节对应的云顶高度(光学厚度)高于(大于)秋、冬季节。在区分不同季节、不同出现类别的前提下,根据光学厚度—云顶气压联合分布频率为1%的临界值所对应的大值分布范围,确定了青藏高原各云型在光学厚度—云顶气压联合分布上的分布图,从而可为卫星遥感判别青藏高原云型提供依据。  相似文献   

16.
利用2001~2016年MODIS月平均液相云水路径(Cloud Liquid Water Path,LWP)、冰相云水路径(Cloud Ice Water Path,IWP)资料和ERA-Interim再分析等资料,分析了青藏高原空中云水的分布特征、变化趋势以及与大气环流变化和水汽输送变化的关系。结果显示,LWP和IWP的年平均分布形态与降水、可降水量对应较好,林芝地区聚集了丰富的LWP、IWP、降水量和可降水量。受印度洋季风影响,LWP和IWP存在明显的季节变化,夏季LWP和IWP最丰富,冬季最少。水汽传输和高原的动力、热力作用是影响夏季LWP和IWP分布的主要因素,夏季高原南部相对湿度大,水汽抬升强烈,促进了LWP和IWP的形成和积累。LWP和IWP随海拔高度的变化特征较为相似,3000~5500 m海拔高度区间内二者的总体变化特征与青藏高原降水的梯度变化特征一致,为随高度先较快升高后保持稳定的分布特征。青藏高原年平均和季节平均LWP和IWP在2001~2016年间均以减少趋势为主,这一变化趋势与云量和降水变化趋势一致,LWP和IWP的减少趋势与水汽输送通量散度的增加密切相关。  相似文献   

17.
通过对青藏高原东部地区近几年部分探空资料的分析,得出了一些有意义的结论。结果表明:冬季,青藏高原东侧地区在对流层下部存在明显的逆温现象,在逆温层之下,大气相对湿度大,水汽随高度减小的幅度小,大气处于中性层结状况;在此逆温层之上,大气相对湿度小。在逆温层底部有大量的水汽堆积,在空中形成明显的逆湿层,而在高原主体上并没有此逆温层的存在,高原东侧各站逆温层底的高度差别不大。夏季,青藏高原东侧地区20时可以存在明显的混合层,混合层的高度在成都站最小,重庆站最大,而高原主体混合层高度大于东侧地区。旱年混合层高度大于涝年。8时和20时,冬季大气温、湿垂直特性变化不明显,而夏季具有明显的变化。夏季,降水过程明显抑制混合层的发展,在暴雨过程及其前后,混合层有明显的成熟、消亡、重新建立的特征。  相似文献   

18.
青藏高原东部大气探空廓线的气候特征分析   总被引:1,自引:0,他引:1  
通过对青藏高原东部地区近几年部分探空资料的分析,得出了一些有意义的结论。结果表明:冬季,青藏高原东侧地区在对流层下部存在明显的逆温现象,在逆温层之下,大气相对湿度大,水汽随高度减小的幅度小,大气处于中性层结状况;在此逆温层之上,大气相对湿度小。在逆温层底部有大量的水汽堆积,在空中形成明显的逆湿层,而在高原主体上并没有此逆温层的存在,高原东侧各站逆温层底的高度差别不大。夏季,青藏高原东侧地区20时可以存在明显的混合层,混合层的高度在成都站最小,重庆站最大,而高原主体混合层高度大于东侧地区。旱年混合层高度大于涝年。8时和20时,冬季大气温、湿垂直特性变化不明显,而夏季具有明显的变化。夏季,降水过程明显抑制混合层的发展,在暴雨过程及其前后,混合层有明显的成熟、消亡、重新建立的特征。  相似文献   

19.
20.
青藏高原区域气候变化及其差异性研究   总被引:31,自引:0,他引:31       下载免费PDF全文
利用1961—2007年青藏高原66个气象台站气温和降水量资料,通过典型气候分区,系统研究了近47年来青藏高原气温、降水量等气候因子时空演变规律,揭示了青藏高原不同区域气候变化的差异性。研究表明:近47年来,青藏高原的气候呈现出显著增暖趋势,年平均气温以0.37℃/10a的速率上升,气候变暖在夜间要较日间明显。冬季较其他季节明显,2月气温由冷向暖的转变最为显著,8月最不显著,且在某些区域有变冷迹象;高原边缘地区气候变暖要明显于高原腹地,青海北部区特别是柴达木盆地是青藏高原气候变化的敏感区。降水量总体表现出增多态势,气候倾向率达9.1mm/10a,但区域性差异较为明显,藏东南川西区是青藏高原降水量增多最显著的地区;12月至次年5月即冬春季整个青藏高原降水量随着气候变暖而增多,7月和9月黄河上游区1987年后干旱化趋势明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号