首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen isotope ratios, whole rock major and trace element compositions, and petrological characteristics of 52 samples from nine distinct igneous lithologies in the lower plate of the Whipple Mountain metamorphic core complex of south-eastern California indicate that both mylonitic and non-mylonitic lithologies underwent exchange with surface-derived meteoric waters. Broadly granodioritic lithologies are characterized by whole rock δ18O values that range from 10.6 to 2.6‰. Isotopic compositions of quartz and feldspar mineral separates indicate that quartz has largely retained original igneous compositions but that feldspar has undergone variable and often large 18O-depletions (up to 6.5‰). Over 4 km of structural relief is exposed in lower plate gneisses below the Whipple detachment fault including non-mylonitic lithologies at shallow structural levels above the mylonite front, and mylonitic gneisses at intermediate to deep levels below the mylonite front. Coupled δ18Oqtz - δ18OFsp systematics of non-mylonitic and mylonitic andesite to rhyolite dykes from shallow and intermediate structural levels of the lower plate document two episodes of hydrothermal alteration: a high-temperature (>c.600d?C) episode involving a metamorphic or magmatic fluid with δ18O values ~ 7‰ and a low-temperature (c.350d?C) episode involving low-δ18O meteoric fluids. All the dykes that document exchange with meteoric fluids are non-mylonitic. Coupled δ18OFsp systematics of non-mylonitic and mylonitic granodioritic gneisses from above and below the mylonite front also document low-temperature (c. 350d? C) exchange with meteoric fluids. The data indicate that infiltration of meteoric fluids occurred as lower plate lithologies were juxtaposed against the base of the faulted upper plate. High-angle normal faults in the upper plate served as the conduits for the downward circulation of surface-derived fluids. Meteoric fluids were able to penetrate across the detachment fault into the lower plate. Uplift rates coupled with independent cooling rates indicate that surface-derived fluids penetrated to a depth of c.4km and possibly as deep as c.8km. Penetration of surface-derived fluid into the ductile deformation regime is not required to explain the low δ18O values observed in lower plate lithologies of the Whipple Mountain metamorphic core complex.  相似文献   

2.
The fluid composition, δD of channel H2O, and δ18O of lattice oxygen have been determined in beryl and emerald from a variety of geological environments and used to constrain the origin of the parental fluids from which beryl has grown. Step-heating analyses performed by quadrupolar mass spectrometry were used to quantify the composition of the fluid phases in beryl from granitic pegmatites and greisens and emerald from Brazil, Colombia, and Afghanistan. An important conclusion is that beryl and emerald have a similar fluid composition, with concentrations of H2O being greater than 90% of the total water in the mineral irrespective of the age of formation (2.0 Ga to 32 Ma) and tectonic settings. However, the Brazilian Santa Terezinha shear-zone emerald deposit contains abundant CO2, up to 13 wt% of the total fluid. A second conclusion is that the channel H2O content for some Brazilian emeralds is higher than the range defined for beryl in the literature, especially for those related to the shear-zone type (2.99 lt; H2O < 3.16 wt%) and the pegmatite type from the Pombos, Pela Ema, and Pirenopolis deposits (2.78 < H2O < 3.01 wt%). Colombian emeralds have very low H2O contents (1.30 < H2O < 1.96 wt%), among the lowest in the world.

Brazilian, Colombian, and Afghanistani emeralds have contrasting and restricted ranges of δ18O values. In Brazil, emeralds related to pegmatites have a systematic δ18O inter-deposit variability (+6.3 < δ18O < +12.4‰). The calculated δ18O of the fluid was buffered by the host ultrabasic rocks during fluid-rock interaction. Emerald and cogenetic phlogopite related to shear-zone-type deposits have a quite restricted δ18O range (+12.0 < δ18O 7lt; +12.4‰); the calculated is interpreted to represent the original isotopic composition of the hydrothermal fluid. Relative to Brazil, the δ18O of Colombian and Afghanistani emeralds shows strong enrichment in 18O (+13.4 < δ18O < +23.6‰), and the high calculated δ18O of the fluid suggests extensive reaction with 18O-rich sedimentary or metasedimentary rocks.

In Brazil, the δD composition of channels in emerald and the calculated δ18OH2O for phlogopite are compatible with both magmatic and metamorphic origins. A magmatic origin is supported for emeralds associated with the pegmatitic Socotó and Carnaiba deposits (mean δD = ?37.8 ± 8‰) and a metamorphic origin is suggested for the Santa Terezinha shear-zone type (mean δD = ?32.4 ± 3‰). A metamorphic origin is proposed for Colombian emeralds. Afghanistani emeralds have a δD composition of channels (mean δD = ?46.3 ± 1.3‰) that is compatible with both magmatic and metamorphic origins.  相似文献   

3.
At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700°C.The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The δ18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated δ18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15‰ in the lower grades to an average of about 8.5‰ in the migmatite.The δD values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated δDH2O values for the metamorphic fluid decrease from ?5‰ in the glaucophane zone to an average of about ?70‰ in the migmatite. The δD values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend.Theδ18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The δD values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism.Detailed data on 20 marble units show systematic variations of δ18O values which depend upon metamorphic grade. Below the 540°C isograd very steep δ18O gradients at the margins and large δ18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540°C isograd lower δ18O values occur in the interior of the marble units reflecting a greater degree of recrystallization and the occurrence of Ca-Mg-silicates.Almost all the δ13C values of the marbles are in the range of unaltered marine limestones. Nevertheless, the δ13C values of most marble units show a general correlation with δ18O values.The CO2H2O mole ratio of fluid inclusions in quartz segregations range from 0.01 to 2. Theδ13C values of the CO2 range from ?8.0 to 3.6‰ and indicate that at some localities CO2 in the metamorphic fluid was not in carbon isotopic equilibrium with the marbles.  相似文献   

4.
 Previous stable isotope studies at Lizzies Basin revealed that metasedimentary rocks are 18O-depleted relative to protolith values, particularly in the lower parts of the section (Lower Zone) where the rocks are also isotopically homogeneous on a scale of hundreds of meters (quartz δ18O=+9.0 to +9.6 per mil). In contrast, metasedimentary rocks at higher levels at Lizzies Basin (Upper Zone) are less 18O-depleted and more heterogeneous in δ18O. In order to understand more fully the isotopic evolution of this terrane, a series of detailed, meter-scale traverses across various metamorphic and igneous lithologies were completed at Lizzies Basin, and at the structurally higher Angel Lake locality. Traverses in the Lizzies Basin Lower Zone and in the lower parts of Angel Lake (Angel Lake Lower Sequence) across various silicate lithologies, including abundant granitoids, reveal similar degrees of homogeneity, although the average δ18O values are higher at Angel Lake. In contrast, traverses which include substantial thicknesses of marble and calc-silicate gneiss and very little granitoid have more heterogeneous quartz δ18O values (+11.9 to +13.4 per mil), and also have a higher average δ18O (+12.9 per mil), than observed elsewhere. The scale of 18O/16O homogeneity in quartz observed at Lizzies Basin and Angel Lake (meters to hundreds of meters) requires fluid-mediated isotope exchange, which accompanied Tertiary metamorphism. There is a correlation between the degree of 18O-depletion in metasedimentary rocks, 18O/16O homogenization between lithologies, and the proportion of granitoids (leucogranites in particular) within any part of the section, and a corresponding anticorrelation with the proportion of marble. This points to a causal relationship, whereby the leucogranites (as well as the Tertiary hornblende diorite and biotite monzogranite) acted as both a relatively low-18O reservoir and a source of fluids to enhance exchange, while the marbles hindered isotope depletion and homogenization by acting as relatively high-18O reservoirs and impermeable layers. Material balance calculations help delineate the plausible mechanisms of exchange between granitoids and metasediments. Single-pass infiltration of magmatic fluids from the granitoids is not capable of reproducing all of the observations. Fluid-mediated exchange by convective recirculation of magmatic fluids on a scale of meters is the mechanism which explains all of the observations. The generalized model for the isotopic evolution of the East Humboldt Range core complex provides an excellent opportunity to establish the main causes and controlling factors of 18O-depletion and 18O/16O homogenization during regional metamorphism. Received: 27 July 1993 / Accepted: 1 July 1994  相似文献   

5.
Magnesium isotopic compositions, along with new Sr–Nd–Pb isotopic data and elemental analyses, are reported for 12 Miocene tourmaline-bearing leucogranites, 15 Eocene two-mica granites and 40 metamorphic rocks to investigate magnesium isotopic behaviors during metamorphic processes and associated magmatism and constrain the tectonic-magmatic-metamorphic evolution of the Himalayan orogeny. The gneisses, granulites and amphibolites represent samples of the Indian lower crust and display large range in δ26Mg from −0.44‰ to −0.09‰ in mafic granulites, −0.44‰ to −0.10‰ in amphibolites, and −0.70‰ to −0.03‰ in granitic gneisses. The average Mg isotopic compositions of the granitic gneisses (−0.19 ± 0.34‰), mafic granulites (−0.22 ± 0.17‰) and amphibolites (−0.25 ± 0.24‰) are similar, indicating the limited Mg isotope fractionation during prograde metamorphism from granitic gneisses to mafic granulites and retrograde metamorphism from mafic granulites to amphibolites. The Eocene two-mica granites and Miocene leucogranites are characterized by large variations in elemental and Sr–Nd–Pb isotopic compositions. The leucogranites and two-mica granites have their corresponding (87Sr/86Sr)i varying from 0.7282 to 0.7860 and 0.7163 to 0.7191, (143Nd/144Nd)i from 0.511888 to 0.512040 and 0.511953 to 0.512076, 207Pb/204Pb from 15.7215 to 15.7891 and 15.7031 to 15.7317, 208Pb/204Pb from 38.8521 to 39.5286 and 39.2710 to 39.4035, and 206Pb/204Pb from 18.4748 to 19.0139 and 18.7834 to 18.9339. However, they have similar Mg isotopic compositions (−0.21‰ to +0.06‰ versus −0.24‰ to +0.09‰), which did not originate from fractional crystallization nor source heterogeneity. Based on hornblende/biotite/muscovite dehydration melting reaction and Mg isotopic variations in two-mica granites and leucogranites with the proceeding metamorphism, along with elemental discrimination diagrams, Eocene two-mica granites and Miocene leucogranites could be related to hornblende dehydration melting and muscovite dehydration melting, respectively. Mg isotopic compositions of Eocene two-mica granites become heavier compared to the source because of residues of isotopically light garnet in the source; while those of Miocene leucogranites become lighter because of entrainment of isotopically light garnet from the source region. Thus, a new model for crustal anatexis and Himalayan orogenesis was proposed based on the Mg isotope fractionation in the leucogranites and metamorphic rocks. This model emphasizes a successive process from Indian continental subduction to rapid exhumation of the Higher Himalayan Crystalline Series (HHCS). The former underwent high-temperature (HT) and high-pressure (HP) granulite-facies prograde metamorphism, which resulted in the hornblende dehydration melting and the formation of Eocene two-mica granites; while the latter experienced amphibolite-facies retrogression and decompression, which resulted in the muscovite dehydration melting and the formation of Miocene leucogranites.  相似文献   

6.
Gneiss domes involving the South Tibetan Detachment System provide evidence for crustal extension simultaneous with shortening. The Nielaxiongbo gneiss dome is composed of a metamorphic complex of granitic gneiss, amphibolite, and migmatite; a ductilely deformed middle crustal layer of staurolite- or garnet-bearing schist; and a cover sequence of weakly metamorphosed Triassic and Lower Cretaceous strata. The middle crust ductilely deformed layer is separated from both the basement complex and the cover sequence by lower and upper detachments, respectively, with a smaller detachment fault occurring within the ductilely deformed layer. Leucogranites crosscut the basement complex, the lower detachment, and the middle crustal layer, but do not intrude the upper detachment or the cover sequence. Three deformational fabrics are recognized: a N–S compressional fabric (D1) in the cover sequence, a north- and south-directed extensional fabric (D2) in the upper detachment and lower tectonic units, and a deformation (D3) related to the leucogranite intrusion. SHRIMP zircon U–Pb dating yielded a metamorphic age of ~514 million years for the amphibolite and a crystallization age of ~20 million years for the leucogranite. Hornblende from the amphibolite has an 40Ar/39Ar age of 18 ± 0.3 million years, whereas muscovites from the schist and leucogranite yielded 40Ar/39Ar ages between 13.5 ± 0.2 and 13.0 ± 0.2 million years. These results suggest that the basement was consolidated at ~510 Ma and then exhumed during extension and silicic plutonism at ~20 Ma. Continuing exhumation led to cooling through the 500°C Ar closure temperature in hornblende at ~18 Ma to the 350°C Ar closure temperature in muscovite at ~13 Ma. The middle crustal ductilely deformed layer within gneiss domes of southern Tibet defines a southward-extruding ductile channel, marked by leucogranites emplaced into migmatites and amphibolites. We propose a model involving thinned upper crust for the initial extension of the Tibetan Plateau in the early Miocene.  相似文献   

7.

Metamorphosed turbidites from the Omeo Metamorphic Complex show only minor changes in δ18O values with increasing metamorphic grade from 13.4 ± 1.7% in the chlorite and biotite zones to 12.3 ± 1.0% in the sillimanite + K‐feldspar zone. Rocks within 5 km of the S‐type granite at Hume Dam have δ18O values of 6.8–8.1% that probably reflect interaction with heated meteoric‐igneous fluids. Interaction with igneous fluids has also occurred close to other I‐ and S‐type granites in this region. However, pervasive metamorphic fluid‐rock interaction in this terrain did not occur, which limits the region's potential for hydrothermal mineralisation. Anatexis at high grades was probably via dehydration‐melting reactions that consumed muscovite and biotite, which is consistent with there being little fluid present during metamorphism. Small (kilometre scale or less) S‐type granites in the sillimanite + K‐feldspar zone have δ18O values similar to those of the surrounding metasediments and probably formed by melting of those rocks. By contrast, larger (tens of kilometres scale) Ca‐rich, peraluminous, S‐type granites have lower δ18O values than the surrounding metasediments, and may represent melts of underlying middle to lower crust.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(11-12):1787-1804
Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. δ18O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7‰ and 5.3 to 11.5‰, respectively, and most values are higher than those considered “normal” for basaltic rocks (5.4 to 6.0‰). In general, there is a positive correlation between whole rock δ18O and water content, which suggests that elevated δ18O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. δ18OH2O values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from ∼−1 to 6‰ with an average value of ∼3‰. Smectite in the lower-grade zones gives computed δDH2O values between −26 and −83‰, whereas epidote in the higher-grade zones gives δDH2O values of −15 to 6‰. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid δD and δ18O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated δ18O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the shallower portions of the system. The increase in δ18O values of massive flow interiors with depth is interpreted as a result of rock interaction with a fluid of constant oxygen isotopic composition with increasing temperature. The stable isotopic data are supportive of previous suggestions that seawater was involved in the hydrothermal system associated with the Midcontinent Rift. Although the origin of the seawater remains problematic, it appears that marine incursions may have occurred during the late stages of Portage Lake volcanism, and periodically thereafter.  相似文献   

9.
Unusual 18O depletion, with δ18O values as negative as −10‰ to −4‰ relative to VSMOW, was reported in zircons from ultrahigh-pressure eclogite-facies metamorphic rocks in the Dabie-Sulu orogenic belt, China. But it is critical for the negative δ18O zircons to be distinguished between magmatic and metamorphic origins, because the 18O depletion can be acquired by high-T eclogite-facies metamorphism of meteoric-hydrothermally altered low δ18O rocks. While zircon O diffusion kinetics has placed a reasonable constraint on this, zircon trace element compositions can provide a straightforward distinction between the magmatic and metamorphic origins. This paper reports our finding of unusual 18O depletion in zircon from granitic gneiss in the northeastern end of the Sulu orogen. Zircon δ18O values vary from −7.8‰ to −3.1‰ along a profile of 50 m length at Zaobuzhen. They are close to extremely low δ18O values of −9.0‰ to −5.9‰ for metagranite at Qinglongshan and adjacent areas in the southwestern end of the Sulu orogen. CL imaging suggests that the low δ18O zircons at Zaobuzhen are primarily of magmatic origin, but underwent different degrees of metamorphic modification. Zircon U-Pb dating yields middle Neoproterozoic ages of 751 ± 27 to 779 ± 25 Ma for protolith crystallization and Triassic ages of 214 ± 10 to 241 ± 33 Ma for metamorphic resetting. However, no metamorphic modification occurs in zircon REE patterns that only indicate magmatic recrystallization and hydrothermal alteration, respectively. Thus, the negative δ18O zircons are interpreted as crystallizing from negative δ18O magmas due to melting of meteoric-hydrothermally altered negative δ18O rocks in an active rift setting at about 780 Ma. The variation in zircon δ18O values indicates considerable O isotope heterogeneity in its granitic protolith. Zircon Lu-Hf isotope analyses give positive εHf(t) values of 1.6-4.1 and Hf model ages of 1.18-1.30 Ga. This suggests that the granitic protolith was derived from the mid-Neoproterozoic reworking of late Mesoproterozoic juvenile crust. The metagranites at Zaobuzhen and Qinglongshan, about 450 km apart, are two known occurrences of the unusually low δ18O zircons below −6‰ so far reported in the Sulu orogen. They are similar to each other in both protolith and metamorphic ages, so that they share the same nature of both Neoproterozoic protolith and Triassic metamorphism. Therefore, the locally negative δ18O zircons may register centers of low δ18O magmatism during the supercontinental rifting.  相似文献   

10.
 Major and trace element models of recently published vapour-absent mica dehydration melting experiments are used to identify granitoids generated by muscovite and biotite dehydration melting, and to distinguish between plagioclase-limited and biotite-limited, biotite dehydration melting. In the case of granitoids from the Pan-African Damara mobile belt (Namibia), many of the leucogranites and Salem-type granitoids may be modelled by biotite dehydration melting. The low Rb/Sr granitoids (e.g. Donkerhuk Onanis, Salem Onanis, Donkerhuk Nomatsaus, Salem Goas) probably reflect feldspar-limited, biotite dehydration melting (a pelitic source) whereas the high Rb/Sr suites (e.g. Bloedkoppie leucogranite, Stinkbank leucogranite, Salem Swakopmund, Leucocratic Stink bank granite) reflect biotite-limited, biotite dehydration melting (a greywacke source). Alaskites from the Damara belt have major element compositions which are consistent with muscovite dehydration melting, and their positive Eu anomalies are linked to high K2O reflecting K-feldspar entrainment. Combined Zr and LREE (light rare earth element) solubility models indicate that insufficient time (probably less than 104 years) had elapsed between melt generation and melt extraction to ensure that the alaskite melts attained their equilibrium concentrations of Zr and the LREEs. In contrast, the leucogranites and Salem-type granites have attained their equilibrium inventories of these trace elements. Combined Fe2O3 and MgO contents in some samples from two granitoids (the Salem Goas and Donkerhuk Onanis intrusions) are higher than those readily attainable by biotite dehydration melting indicating either: (1) that they contain a contribution from melts generated by incipient garnet breakdown or; (2) that they contain small amounts of an entrained ferromagnesian phase. Received: 24 April 1995/Accepted: 11 December 1995  相似文献   

11.
淡色花岗岩的岩石学和地球化学特征及其成因   总被引:6,自引:0,他引:6  
郭素淑  李曙光 《地学前缘》2007,14(6):290-298
淡色花岗岩(leucogranite)是一类高铝高硅碱的酸性侵入岩,主要地球化学特征是:SiO2≥72%,Al2O3≥14%,Na2O+K2O~8.5%,富Rb,亏损Th、Ba、Sr,稀土总量较一般花岗岩低(∑REE=(40~120)×10-6),且表现为中等分异的轻稀土弱富集型,一般具有Eu负异常;Sr-Nd-Pb-O同位素指示其岩浆明显的陆壳来源。淡色花岗岩主要发育于陆壳(俯冲)碰撞加厚带,由逆冲折返的俯冲板片变沉积岩部分经过脱水熔融产生。淡色花岗岩可划分为三种不同的岩石类型:(1)二云母型淡色花岗岩,由变泥质岩(或变硬砂岩)在中地壳水平经黑云母(和/或白云母)脱水熔融产生;(2)电气石型淡色花岗岩,由变泥质岩在较低温度下经白云母脱水熔融产生;(3)石榴子石型淡色花岗岩,由长英质下地壳经黑云母脱水熔融产生。源区残留独居石、磷灰石等富REE矿物是淡色花岗岩亏损REE、Th等元素的原因。源岩为变泥质岩及源区残留钾长石是淡色花岗岩亏损Sr、Ba的主要原因。  相似文献   

12.
13.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   

14.
Analyses of 230 Franciscan rock and mineral samples, including the San Luis Obispo ophiolite, show that metamorphism produces no change in the δ18O of the graywackes (+11 to +14), but that igneous rocks become enriched in 18O by 2–6% and the cherts depleted by 5–10%. The shales are of two types, a high-18O type (+16 to +20) associated with chert and a low-18O type isotopically and mineralogically similar to the graywackes. The vein quartz (δ = + 15 to + 20) is invariably richer in 18O than the host rock quartz and in most of the rocks the δ18O of the clastic quartz is similar to the δ18O of the whole rock. Mineral assemblages are typically not in isotopic equilibrium. Although the δ18O values are very uniform (+13 to +16). the δ13C of vein aragonite and calcite is widely variable (0 to ? 14), implying that a major source of the carbon is oxidized organic material. The δD values of 83 igneous and sedimentary rocks are -45 to -80, exceptions are the Fe-rich minerals howieite and deerite, which have δD = ?100. All of these samples could have equilibrated with H2O having δD ≈ +10 to ?20 and δ18O ≈ ?3 to +8. assuming temperatures of 100–300°C. However, the serpentines (δD ≈ ?85 to ?110) and the vein minerals (δD = ?23 to ?55) are exceptions. The vein minerals are 10–20%, richer in deuterium than the adjacent wall rocks; they formed from a relatively D-rich metamorphic water, typically at lower temperatures than did their host rocks. The isotopic compositions of the other Franciscan rocks were affected by three distinct events: (1) hydrothermal alteration of the ophiolite complexes and volcanic rocks as a result of submarine igneous activity at a spreading center or in an island-arc environment; (2) low-temperature, high-pressure regional metamorphism and diagenesis; and (3) a late-stage, very low temperature (<100°C) alteration of the ultramafic bodies by meteoric ground waters, producing lizardite-chrysotile serpentine. In the first two cases, the pore fluid involved in the alteration of the Franciscan rocks was sea water. However, this water became somewhat depleted in D and enriched in 18O during blueschist metamorphism, evolving to values of δD ≈ ? 20 and δ18O ≈ + 6 to + 8 at the highest grades. Except for one graywacke sample, the meteoric waters that affected the serpentinites did not significantly change the DH ratios of the OH-bearing minerals in any other Franciscan rock.The δ18O values of orogenic andesites are too low for such magmas to have formed by direct partial melting of Franciscan-type materials in a subduction zone. Andesites either form in some other fashion, or the melts must undergo thorough isotopic exchange with the upper mantle. The great Cordilleran granodiorite-tonalite batholiths, however, are much richer in 18O and may well have formed by large-scale melting or assimilation of Franciscan-type rocks. The range of δD values of Franciscantype rocks is identical to the ?50 to ?80 range shown by most igneous rocks. This suggests that ‘primary magmatic H2O’ throughout the world may be derived mainly by partial melting of Franciscantype materials, or by dehydration of such rocks in the deeper parts of a Benioff zone.  相似文献   

15.
Three types of recent carbonate precipitates from the River Krka, Croatia, were analysed: (1) bulk tufa from four main cascades in a 34 km long section of the river flow through the Krka National Park; (2) a laminar stromatolite‐like incrustation formed in the tunnel of a hydroelectric power plant close to the lowest cascade; and (3) recent precipitates collected on artificial substrates during winter, spring and summer periods. Stable isotope compositions of carbon (δ13C) and oxygen (δ18O) in the carbonate and organic carbon (δ13Corg) were determined and compared with δ18O of water and δ13C of dissolved inorganic carbon (DIC). The source of DIC, which provides C for tufa precipitation, was determined from the slope of the line ([DIC]/[DIC0]?1) vs. (δ13C‐DIC × ([DIC]/[DIC0])) ( Sayles & Curry, 1988 ). The δ13C value of added DIC was ?13·6‰, corresponding to the dissolution of CO2 with δ13C between ?19·5 and ?23·0‰ Vienna Pee Dee Belemnite (VPDB). The observed difference between the measured and calculated equilibrium temperature of precipitation of bulk tufa barriers indicates that the higher the water temperature, the larger the error in the estimated temperature of precipitation. This implies that the climatic signals may be valid only in tufas precipitated at lower and relatively stable temperatures. The laminar crust comprising a continuous record of the last 40 years of precipitation shows a consistent trend of increasing δ13C and decreasing δ18O. The lack of covariation between δ13C and δ18O indicates that precipitation of calcite was not kinetically controlled for either of the elements. δ13C and δ18O of precipitates collected on different artificial substrates show that surface characteristics both of substrates and colonizing biota play an important role in C and O isotope fractionation during carbonate precipitation.  相似文献   

16.
To reconstruct oceanographic variations in the subtropical South Pacific, 271-year long subseasonal time series of Sr/Ca and δ18O were generated from a coral growing at Rarotonga (21.5°S, 159.5°W). In this case, coral Sr/Ca appears to be an excellent proxy for sea surface temperature (SST) and coral δ18O is a function of both SST and seawater δ18O composition (δ18Osw). Here, we focus on extracting the δ18Osw signal from these proxy records. A method is presented assuming that coral Sr/Ca is solely a function of SST and that coral δ18O is a function of both SST and δ18Osw. This method separates the effects of δ18Osw from SST by breaking the instantaneous changes of coral δ18O into separate contributions by instantaneous SST and δ18Osw changes, respectively. The results show that on average δ18Osw at Rarotonga explains ∼39% of the variance in δ18O and that variations in SST explains the remaining ∼61% of δ18O variance. Reconstructed δ18Osw shows systematic increases in summer months (December-February) consistent with the regional pattern of variations in precipitation and evaporation. The δ18Osw also shows a positive linear correlation with satellite-derived estimated salinity for the period 1980 to 1997 (r = 0.72). This linear correlation between reconstructed δ18Osw and salinity makes it possible to use the reconstructed δ18Osw to estimate the past interannual and decadal salinity changes in this region. Comparisons of coral δ18O and δ18Osw at Rarotonga with the Pacific decadal oscillation index suggest that the decadal and interdecadal salinity and SST variability at Rarotonga appears to be related to basin-scale decadal variability in the Pacific.  相似文献   

17.
“Plateau” δ18O values of CO2 that evolved from the Fe(CO3)OH component during isothermal vacuum dehydrations (200-230 °C) of 18 natural goethites range from 8.2 to 28.1‰. In contrast, the measured δ18O values of the goethite structural oxygen range from −11.3 to 1.7‰. The results of this study indicate that the apparent oxygen isotope fractionation factor (18αapp) between plateau CO2 and initial goethite is systematically related to the rate of isothermal vacuum dehydration. The nonlinear correlation and the magnitudes of the 18αapp values are predicted by a relatively simple mass balance model with the following assumptions: (1) the rate of isothermal vacuum dehydration of goethite (for the interval from 0 to ∼60 to 80% loss of structural hydroxyl hydrogen) can be reasonably well represented by first-order kinetics and (2) isotopic exchange between evolving H2O vapor and solid occurs only in successive, local transition states. The generally good correspondence between the model predictions and the experimental data seems to validate these assumptions. Thus, the 18O/16O ratios of the evolved CO2 can act as probes into the transient processes operating at the molecular level during the solid-state goethite-to-hematite phase transition. For example, the activation energy for the rate constant associated with the transition state, oxygen isotopic exchange between solid and H2O vapor, is tentatively estimated as 28 ± 11 KJ/mol. Such knowledge may be of consequence in understanding the significance of 18O/16O ratios in hematites from some natural environments (e.g., Mars?).Kinetic data and δ18O values of CO2 are routinely obtained in the course of measurements of the abundance and δ13C values of the Fe(CO3)OH in goethite. The observed correlation between 18αapp and dehydration rates suggests that plateau δ18O values of evolved CO2 may provide complementary estimates of the δ18O values of total goethite structural oxygen (O, OH, CO2) with an overall precision of about ±1‰. However, because of isotopic exchange during the dehydration process, δ18O values of the evolved CO2 do not reflect the original δ18O values of the CO2 that was occluded as Fe(CO3)OH in goethite.  相似文献   

18.
董汉文  许志琴  孟元库  易治宇 《岩石学报》2017,33(12):3741-3752
北喜马拉雅片麻岩穹窿带(NHGD)内保存了大陆碰撞后青藏高原中下地壳的构造变形、高级变质、陆壳深熔作用等重要信息,是研究喜马拉雅造山带的深部岩浆作用和构造变形之间的耦合关系、深部岩浆活动乃至青藏高原隆升历史等大陆动力学过程的关键部位。本文对藏南错那洞穹窿内淡色花岗岩进行锆石LA MC-ICP-MS U-Pb、白云母~(40)Ar/~(39)Ar年代学和岩石地球化学分析。锆石U-Pb定年和白云母~(40)Ar/~(39)Ar测年结果表明错那洞淡色花岗岩形成于19.5±0.3Ma~19.7±0.7Ma,冷却年龄为15Ma。岩石地球化学特征显示该花岗岩具有明显的Eu负异常,稀土配分模式和微量元素蛛网图与以Manaslu为代表的高喜马拉雅淡色花岗岩一致,而不同于具有加厚地壳的埃达克岩的特征的北喜马拉雅淡色花岗岩,其形成于与南北向拆离相关的伸展环境。  相似文献   

19.
范文博  姜能  翟明国  胡俊 《岩石学报》2019,35(7):2237-2258
淡色花岗岩是一种特殊的花岗岩类型,其暗色矿物含量低,且多含有白云母、电气石或石榴石等富铝矿物。通常认为,淡色花岗岩是大陆碰撞造山带最具标志性的岩石类型,主要来自于地壳内沉积物的部分熔融,虽然一些最新研究强调它只是岩浆高度分异与演化的产物。显生宙时期,华北克拉通北缘花岗质岩浆作用强烈,然而对于区域存在的少量具有淡色花岗岩特征的岩体却关注较少。本文在对冀东麻地含石榴石白云母二长花岗岩详细研究的基础上,对华北北缘显生宙含石榴石淡色花岗岩的特征、时代进行了总结与对比,并对其成因进行了初步探讨。结果表明,这些岩石具有淡色花岗岩的典型矿物组成与地球化学特征,但已有数据还不足以充分论证其是否由变沉积岩部分熔融形成。与此同时,稀土元素四分组效应与Nb/Ta、Zr/Hf、Y/Ho、K/Rb、Rb/Sr等比值以及CaO、Ba、Sr等元素含量的差异性指示,这些花岗岩经历了不同程度的岩浆分异作用,部分岩石受到了岩浆演化晚期熔-流体相互作用的影响。岩浆分异程度的不同,是导致这些淡色花岗岩具有不同稀有金属成矿潜力的重要因素,高度分异演化有利于成矿元素的富集。由于仅部分淡色花岗岩经历了较高程度的分异,因此岩浆分异可能并非淡色花岗岩形成的必要机制。华北北缘含石榴石淡色花岗岩集中出现在中-晚二叠世、中-晚侏罗世。前者的形成,与古亚洲洋闭合时的碰撞造山有关;后者与东北、华南等中国东部相似岩石同时代产出,形成于古太平洋俯冲的大地构造背景下,其地球动力学内涵值得进一步探讨。  相似文献   

20.
Abstract. Mineral assemblage, precipitation sequence and textures of the gold‐bearing veins from the Hishikari epithermal vein‐type deposits, southern Kyushu, Japan, were examined. In addition, fluid inclusion microthermometry and carbon and oxygen isotopic compositions of calcite were determined. Calcite, and that replaced by quartz, were commonly observed throughout the precipitation sequence of the veins. Thus, calcite must be a more common gangue constituent initially than observed presently. Association of calcite and electrum is observed immediately subsequent to columnar adularia in some vein samples. In addition, close association of electrum with pseudo‐acicular quartz, and electrum with truscottite were observed. The initial coprecipitation of electrum and calcite might be a common phenomenon in the gold‐bearing veins at the Hishikari deposits. The Th (homogenization temperature) data from the Honko‐Sanjin deposits are generally higher than those from the Yamada deposit. Samples that show association of calcite and electrum yielded higher Th (206–217°C, average) than the Th data from calcite associated with low‐grade Au ore or barren (180–204°C, average). The measured Tm (temperature of last melting point of ice) range from ‐0.4 to 0.0°C. The result suggests that the salinity of the hydrothermal solution was low during the precipitation both of calcite associated with Au mineralization and of barren calcite. Fluid inclusion evidence suggestive of boiling of hydrothermal solution for the precipitation of calcite was not recognized in the present work. The δ13C and δ18O values of calcite range from ‐10.8 to —4.7 % and from +3.2 to +15.2 %, respectively. The δ13C value of H2CO3 and the δ18O value of H2O in the hydrothermal fluids calculated assuming isotopic equilibrium with calcite using the temperature obtained by fluid inclusion microthermometry, range from ‐14.4 to ‐9.1 %, and from ‐6.2 to +5.5 %, respectively. Thus, the calculated δ18O values of H2O for calcite further confirm the presence of the 18O‐enriched ore fluids during the mineralization at the Hishikari deposits. The hydrothermal solution isotopically equilibrated with the sedimentary basement rocks was responsible for the gold mineralization associated with calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号