首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Frequency—magnitude relations were established for a fault system embedded in a shear zone with dimensions 1000 km × 200 km that extends from the Gulf of Elat to the East-Anatolian fault. The resulting frequency—magnitude relations were found to be in good agreement with both the documented instrumental earthquake statistics for ML 4.5 in the present century and microearthquake activity for ML 1.5 recorded in Israel and some adjacent territories during 1976–1979. When these frequency—magnitude relations are extended to 2500 B.C., one can account for the maximal magnitude earthquakes that echo in the Bible and are manifested in archaeological excavations.

It is found that seismic slip-rates increase significantly from south toward north in such a way that in north-central Israel and Lebanon, seismic slip constitutes only 1/3 of the motion, the rest being attributed to visco-elastic processes. Further north, as one approaches the collision zone with the Turkish plate, aseismicity tends to disappear and the slip is purely seismic.  相似文献   


2.
The isoseismal map for the earthquake that occurred in the Jordan Valley on 11 July 1927 was analyzed and used to develop Peak Ground Acceleration (PGA) Attenuation relation for Jordan needed for use in relevant seismic hazard evaluation procedures. Strong motion data of earthquakes that occurred in Jordan and Israel during the last 15 years were summarized. A comparison is made between recorded PGA's and those calculated using the derived Attenuation relations commonly used by experts in the region. The comparison showed that the derived relation is appropriate for estimating PGA values on alluvium foundations. The derived relation gave results close to those obtained using a relation introduced by Esteva in 1974. The 1982 relation of Ben-Menahem and co-workers gave reasonable predictions of PGA values for most geological formations of foundations, in general.  相似文献   

3.
Akin  Mutluhan  Ozvan  Ali  Akin  Muge K.  Topal  Tamer 《Natural Hazards》2013,69(3):1551-1575
Natural Hazards - The eastern shore of Lake Van was shaken by a powerful earthquake (M w 7.2) on October 23, 2011. The epicenter of the earthquake was located at about 30 km north of the...  相似文献   

4.
The traditional process of evaluating seismic intensities from questionnaires is laborious and very subjective. An attempt here is made to introduce computerized processing of questionnaires. This is made possible by modifying the questionnaire forms and developing a computer program that performs the evaluation in a rather objective manner. The prime assumption behind this procedure is that observed intensities in a certain location are normally distributed. This new approach has been tested successfully with recently obtained data on earthquakes in Israel, yielding evaluated intensities and isoseismal maps for earthquakes in the Jordan Valley (January 13, 1982), Lebanon (June 3, 1983), the Gulf of Suez (June 12, 1983), the Jezreel Valley (August 24, 1984), and near Jericho (January 25, 1985).  相似文献   

5.
In this study, we have prepared an intensity map based on macroseismic survey and all the available information from print and electronic media of damage and other effects due to March 05, 2012, M 4.9 Bahadurgarh (Haryana–Delhi border) earthquake and interpreted them to obtain modified Mercalli intensities (MMI) at over 62 locations surrounding the Haryana and Delhi. We have cross-checked the damage information from print and electronic media in the field at 25 sites within 110 km surrounding the epicenter for validation. Based on the questionnaire which is used in macroseismic survey and personal judgment, intensities were assigned accordingly as per physical survey at 25 sites and for rest based on media reporting. A maximum intensity of VI was assigned to this seismic event. Isoseismals of V and VI have been fully covered in the field observations. Beside this, some of the points have also been covered for isoseismal IV and isoseismal III and rest are based on media report only. The intensity map reveals several interesting features. Elliptically elongated shape of intensity map shows that most of the slightly damaged areas are concentrated toward the northwestern side of the epicenter having intensity V which may be due to directivity or site effects. A regression relation has also been derived between intensity and epicentral distance. The derived attenuation relation will be useful for assessing damage of a potential future earthquake (earthquake scenario–based planning purposes) for the Delhi NCR region.  相似文献   

6.
On August 20, 1852, an earthquake caused widespread destruction in the city of Santiago de Cuba and its surroundings. A comprehensive search for contemporary documentation was made. The information gathered was used for a detailed analysis of the damage from and characteristics of the earthquakes. Intensities were evaluated at 45 localities, and an isoseismal scheme has been drawn. Maximum intensity reached 8 degrees (MSK), and 6.4 was the estimated magnitude. Damage to the city of Santiago de Cuba has been studied in detail. The low quality of construction aggravated the damage. The total number of casualties was two dead and approximately 200 injured. The shock was felt within 80,000 km2. The epicenter was determined as 19.75º N, 75.32º W, h = 30 km. This study shows that contemporary Cuban documents must be studied with care in their historical and cultural background to avoid overestimating earthquake intensities.  相似文献   

7.
The 26th January 2001 Bhuj earthquake occurred in the Kachchh Rift Basin which has a long history of major earthquakes. Great Triangulation Survey points (GTS) were first installed in the area in 1856–60 and some of these were measured using Global Positioning System (GPS) in the months of February and July 2001. Despite uncertainties associated with repairs and possible reconstruction of points in the past century, the re-measurements reveal pre-seismic, co-seismic and post-seismic deformation related to Bhuj earthquake. More than 25 Μ-strain contraction north of the epicenter appears to have occurred in the past 140 years corresponding to a linear convergence rate of approximately 10 mm/yr across the Rann of Kachchh. Motion of a single point at Jamnagar 150 km south of the epicenter in the 4 years prior to the earthquake, and GTS-GPS displacements in Kathiawar suggests that pre-seismic strain south of the epicenter was small and differs insignificantly from that measured elsewhere in India. Of the 20 points measured within 150 km of the epicenter, 12 were made at existing GTS points which revealed epicentral displacements of up to 1 m, and strain changes exceeding 30 Μ-strain. Observed displacements are consistent with reverse co-seismic slip. Re-measurements in July 2001 of one GTS point (Hathria) and eight new points established in February reveal post-seismic deformation consistent with continued slip on the Bhuj rupture zone.  相似文献   

8.
An earthquake of magnitude 5.0 with its epicenter in the West Sikkim district occurred on the evening of 20th May 2007. The macroseismic study revealed an ENE-WSW isoseismal pattern indicating a trend conforming to that of the major tectonic discontinuities in this part of the Himalaya.  相似文献   

9.
Although the effects of earthquakes in destruction found in archaeological excavations have been recognized for decades, their importance remains controversial. New measurements of motions and analysis of earthquakes on active geological faults substantially improve the explanation of often-observed, but rarely understood, repeated destruction revealed by these excavations. Ancient Armageddon (Megiddo), the single most excavated archaeological site in Israel, is a fascinating example of this. It is situated next to the Mt. Carmel-Gilboa fault system, which, according to recent geophysical measurements, is seismically active. Its past activity: (a) has created, over time, the topography that made Megiddo strategically so important; and (b) through episodic earthquakes destroyed Megiddo's walls and buildings repeatedly.

The accumulated fault motion created the Nahal Iron Pass, which controlled ancient traffic between Syria and Egypt. Megiddo's strategic location at this pass led to some of the greatest ancient battles fought in this region and was the reason for the maintenance of its fortifications. The recurrence of damaging earthquakes, possibly 3 to 4 per millennium, however, explains the repeated destruction of Megiddo–sometimes attributed, for lack of a better explanation, to unproved battles: e.g., King David's often assumed conquest and mindless destruction of Megiddo was actually a destructive earthquake in northern Israel that occurred at ~1000 B.C. Another earthquake at ~1400 B.C., which damaged many parts of the country, also destroyed Megiddo at that earlier time. Finally, the earthquake during the battle of the Apocalypse at Armageddon (Revelations 17:8-18) may well be a simple retrospective prophecy.  相似文献   

10.
Earthquakes cause static stress perturbations in the nearby crust and mantle. Obeying rheological laws, this stress relaxes in a time frame of months to years with the spatial extent of few km to hundreds of km. While postseismic relaxation associated with major inter-plate earthquakes is well established, there have been few opportunities to explore its occurrence following intraplate earthquakes. The M w 7.6 Bhuj earthquake on January 26, 2001 in western India is considered to be an intraplate event and provided a unique opportunity to examine post-earthquake relaxation processes sufficiently away from plate boundaries. To study the characteristics of transient postseismic deformation, six Global Positioning System campaigns were made at 14 sites. The postseismic transients were delineated after removing plate motions from the position time series. Postseismic deformation has been observed at all the sites in the study area. During 2001?C2007, the site closest to the epicenter exhibited postseismic deformation of about 30 and 25?mm in the north and east components, respectively. Time series of the NS and EW components of the postseismic transients can be fitted to both logarithmic and exponential functions. Close to the epicenter, the logarithmic function fits well to the initial transient, and an exponential function fits well to the later phases. The remaining sites (located east and west of the epicentral region) exhibited significantly diminished north?Csouth relaxation. Rapidly decaying afterslip and poroelastic mechanisms seem to be responsible for postseismic relaxation in the vicinity of epicenter during the initial period subsequent to the Bhuj earthquake. Postseismic relaxation by viscoelastic flow below the seismogenic zone seems to affect displacements across the entire Bhuj region. This paper presents the characteristics of postseismic transients and deformation processes in the scenario of the highly heterogeneous crust in the Bhuj region.  相似文献   

11.
Early Acheulian assemblages in fluviolacustrine contexts at the Early Pleistocene site of ‘Ubeidiya (Jordan Valley, Israel) have been described as “living floors.” A study of variation in the surface abrasion of stone tools from several such “living floors” suggest a mixture of cultural and geological factors were involved in the formation of these assemblages. © 1999 John Wiley & Sons, Inc.  相似文献   

12.
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated.The epicenters for four large (M 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58° or 73°, respectively. A preferred nodal-plane dip of 36° was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required.  相似文献   

13.
Tell es‐Sâfi/gath is situated in the semiarid foothills of central Israel, adjacent to the coastal . plain. An enigmatic landscape feature, noted on aerial photographs, encircles the tell on three sides. This unique feature, unknown from other Near Eastern tells, was investigated. Methods of analysis include aerial photographs, field surveys, excavations, soil analyses, chronotypological ceramic classification, and radiocarbon dating. We concluded that (1) the peculiar landscape feature is a huge human‐made trench, over 2 km long, 5–6 m deep, and more than 8 m wide, cut through bedrock; (2) the trench was excavated during the Iron Age IIA (ca. 1000–800 B.C.E.), apparently as part of a siege system; (3) the extracted rock and soil material was dumped on the Iron Age landscape surface on one side of the trench, forming an elevated “berm”; (4) erosion processes transformed this landscape scar, as the trench filled with sediment; (5) stratigraphic analysis indicates two major phases of filling, separated by a period of landscape stability and soil formation (A horizon); (6) the two filling phases, exhibiting Iron Age IIA and Byzantine pottery (ca. 324—638 C.E.), appear to coincide with more intense human activity; and (7) the possible effect of climatic variations seems less obvious. © 2005 Wiley Periodicals, Inc.  相似文献   

14.
2022年1月8日青海门源MS 6.9地震发生在青藏高原东北缘的祁连山断块内部,仪器震中位于海原活动断裂系西段的冷龙岭断裂带上,是该断裂系自1920年海原8.5级大地震后再次发生M>6.5的强震。考察结果的初步总结表明,此次门源地震产生了呈左阶斜列分布、总长度近23 km的南北两条破裂,在两者之间存在长约3.2 km、宽近2 km的地表破裂空区。南支破裂(F1)出现在托来山断裂的东段,走向91°,长约2.4 km,以兼具向南逆冲的左旋走滑变形为主,最大走滑位移近0.4 m。北支主破裂(F2)出现在冷龙岭断裂的西段,总长度近20 km,以左旋走滑变形为主,呈整体微凸向北东的弧形展布,包含了走向分别为102°、109°和118°的西、中、东三段,最大走滑位移出现在中段,为3.0±0.2 m。此外,在北支主破裂中—东段的北侧新发现一条累计长度约7.6 km、以右旋正断为主的北支次级破裂(F3),累计最大走滑量约0.8 m,最大正断位移约1.5 m。综合分析认为,整个同震破裂以左旋走滑变形为主,具有双侧破裂特点,宏观震中位于北支主破裂的中段,其地表走滑位移很大可能与震源破裂深度浅有关,其中的右旋正断次级破裂可能是南侧主动盘向东运移过程中拖曳北侧块体发生差异运动所引起的特殊变形现象。印度与欧亚板块近南北向强烈碰撞挤压导致南祁连断块沿海原左旋走滑断裂系向东挤出,从而引发该断裂系中的托来山断裂与冷龙岭断裂同时发生破裂,成为导致此次强震的主要动力机制。在此大陆动力学背景下,以海原左旋走滑断裂系为主边界的祁连山断块及其周边的未来强震危险性需得到进一步重视。   相似文献   

15.
Mikhail Ezersky et al. have published the article “Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan” (February 2013) in which the paper “Salt karst and tectonics: sinkholes development along tension cracks between parallel strike-slip faults, Dead Sea, Jordan” published by Closson D, Abou Karaki N, Hallot F in 2009 (Earth Surface Processes and Landforms, 34(10), 1408–1421) is questioned. In this short paper, we propose some clarifications and discuss the criticisms of these authors.  相似文献   

16.

On September 7, 2017, at 23:49 h (local time), a Mw8.2 intermediate-depth normal-fault earthquake occurred in the Gulf of Tehuantepec, 133 km away from Pijijiapan, Chiapas, and about 700 km away from Mexico City. This event caused 95 fatalities and severe damage to different types of structures located close to the epicenter. The main objective of this work is to present observed damages caused in the state of Oaxaca by this earthquake, which were mainly concentrated in self-built houses and historical and ancient buildings. The locations visited by the reconnaissance team of the Institute of Engineering from UNAM in Oaxaca included Salina Cruz, Tehuantepec, Ixtaltepec, Juchitán, Huatulco and La Ventosa.

  相似文献   

17.
The Jebel (Jebel is mountain in Arabic) Hamrat Fidan marks the “gateway” to the Feinan district of southern Jordan—one of the largest sources of copper during the prehistoric and Early Bronze Ages in the eastern Mediterranean. Preliminary excavations and surveys at sites along the Wadi Fidan have revealed a long history of settled occupation extending from the Pre‐Pottery Neolithic (ca. 6,500 B.C.) to early medieval times. Because of this long history of occupation, and the fact that this area was a regional center for the production of copper, the study of this area is important for understanding early metallurgy, craft specialization, and social evolution. During the summer of 1997, geophysical investigations at a series of Neolithic and Bronze Age sites identified specific areas within Wadi Fidan for future intensive excavations. Three geophysical techniques (electromagnetic induction, ground‐penetrating radar, and magnetometry) were used to help locate buried architectural and industrial features remaining from early mining and metallurgical operations, including copper ore bodies or voids. Geophysics was not used at the actual mining sites because of scheduling constraints; however, geophysics did delineate buried stone walls at three distinct Wadi Fidan sites. Magnetometry and ground penetrating radar provided little useful information. Buried stone walls were apparently “masked” by numerous magnetic stones on the ground surface making magnetometry useless. Reflections from known strata demonstrated that radar penetrated the ground adequately; however, known shallowly buried walls were not recognizable. Electromagnetic induction produced maps of linear and rectilinear features that suggested spatial distribution of widespread buried stone walls suitable for future excavation. A significant and unexpected finding was that electromagnetic induction proved capable of delineating buried stone walls. © 2000 John Wiley & Sons, Inc.  相似文献   

18.
Thermal State and Strength of the Lithosphere Beneath the Chinese Mainland   总被引:1,自引:0,他引:1  
The temperature distributions of the lithosphere underneath the mainland of China were estimated by applying local isostatic equilibrium-constrained geothermal calculations. Maps of the lateral temperature variation at depths of 40, 70, and 100 km are presented for the whole Chinese continent, with the thermal thickness of the lithosphere is calculated. Lithospheric roots of 160–200 km thickness underlie Tarim and the Upper Yangtze platform, but are absent beneath the entire Sino-Korean platform. In general, the Tibetan plateau and fold belts to the north have warm but thick lithospheres, whereas thinner thermal lithospheres have been identified in northern Tibet and central Tian Shan around Issyk-Kul Lake. The warm and soft lithosphere in the Tibetan plateau and Tian Shan are caused by uniform north–south shortening, which may represent a snapshot of the early stage of convective thinning of the convergent lithosphere. However, the lithospheric thinning beneath northeastern China might be related to volatile infiltration by dehydration of the deeply subducting Pacific slab during the Cenozoic. Dry and wet upper mantle rheology display “jelly sandwich” and “crème br?lée” pictures, respectively, demonstrating the mechanical behaviour of the Chinese lithosphere outside the Tibetan plateau. Considering a more geologically evident wet-mantle rheology, the “crème br?lée” model can approximate the lithospheric rheology for the most earthquake-prone regions on the Chinese mainland.  相似文献   

19.
B.K. Rastogi   《Tectonophysics》2004,390(1-4):85-103
This paper presents a study of the damage due to the Mw 7.6–7.7 intraplate Kutch earthquake of 26 January 2001. It was a powerful earthquake with a high stress drop of about 20 MPa. Aftershocks (up to M 4) have continued for 2.5 years. The distribution of early aftershocks indicates a rupture plane of 20–25 km radius at depths of 10–45 km along an E–W-trending and south-dipping hidden fault situated approximately 25 km north of the Kutch Mainland Fault. The moment tensor solution determined from regional broadband data indicates reverse motion along a south-dipping (by 47°) fault. The earthquake is the largest event in India in the last 50 years and the most destructive in the recorded history in terms of socioeconomic losses with 13,819 deaths (including 14 in Pakistan), collapse/severe damage of over a million houses and US$10 billion economic loss. Surface faulting was not observed. However, intense land deformations have been observed in a 40×20-km meizoseismal area. These include lateral spreading, ground uplifts (about a meter), ground slumping and deep cracks. Liquefaction with ejection of sand and copious water was widespread in the Banni grassland, Rann areas (salt plains), along rivers and also in the coastal areas up to 200 km distance from the epicenter in areas of intensity VII to X+. Stray incidences of liquefaction have occurred up to distances of at least 300 km. For the first time in India, multistory buildings have been destroyed/damaged by an earthquake. The maximum acceleration is inferred to be 700 cm/s2 and intensities are 1–3 units higher in soil-covered areas than expected from the decay rate of acceleration for hard rock.  相似文献   

20.
2013年8月28日、31日, 云南迪庆藏族自治州香格里拉县、德钦县、四川省甘孜藏族自治州得荣县交界地区连续发生5.1级、5.9级地震.为了查明此次地震的影响破坏程度, 进行了地震现场建筑物震害考察并对震中附近断裂进行了野外构造地质剖面调查.两次地震在短时间内并在相近位置连续发生, 造成了此次云南香格里拉、德钦-四川得荣交界地震比以往同级地震的破坏程度要高, 地震烈度最高为Ⅷ级, 有感范围大, 5.9级地震宏观震中大致处在整个灾区破坏最严重的奔子栏镇争古村一带(28.20°N, 99.36°E), 距离地震微观震中约5.1km.等震线沿德钦-中甸断裂呈北西向分布, 近似为椭球状, 结合此次地震震中附近区域现场断裂调查、震源机制解数据以及地震余震空间分布特征, 初步推断此次地震的发震构造为德钦-中甸断层, 其主要表现为一次以正断为主兼有左旋走滑错动的地震事件.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号