共查询到20条相似文献,搜索用时 15 毫秒
1.
An upgrade to bistatic scattering strength modelling that is based on the authors' current understanding of bottom topographic scattering with an emphasis on modeling the `forward lobe' where Lambert's law fails quite significantly is reported. Low-frequency bottom scatter modeling is reviewed with particular emphasis on the issues of the forward scattered lobe. A specific model (a modified version of BISSM) is proposed, and the model's advantages and limitations are discussed. The requirement for certain high-resolution geomorphic data needed to support the model is discussed. Like the original BISSM, the version does not modify the accepted form for diffuse scattering, but it does modify the form of the forward lobe 相似文献
2.
Cable P.G. Yudichak T.W. Dorfman Y. Knobles D.P. Renhe Zhang Zhaohui Peng Fenghua Li Zhenglin Li 《Oceanic Engineering, IEEE Journal of》2006,31(1):145-155
Determinations of bottom scattering strength in the decade below 1 kHz under downward refracting conditions have been made using acoustic reverberation and transmission data from the 2001 East China Sea Asian Seas International Acoustic Experiment (ASIAEX). The measurements were performed using explosive sources and receiving hydrophones in ship-suspended vertical-line arrays. The focus of this paper has been the dependence of bottom scattering strength on the frequency and characterization of the uncertainties associated with the extraction of scattering strength from reverberation. The derived bottom scattering strength gradually rises with frequency from 100-300 Hz and then more rapidly above 300 Hz. A potential explanation suggests that the frequency variation results from two scattering mechanisms, rough layer scattering at the low end of the band and sediment near-surface volume scattering at the high end. The spatial extrapolation of these results is explored by comparing them with similarly derived scattering strengths using data obtained under the Navy's Harsh Environments Program at a somewhat separated site (56 km) under environmental conditions similar to those during ASIAEX. In the ASIAEX analysis, it has been found that the largest source of uncertainty in the scattering-strength frequency dependence arises from persistence of finite-amplitude effects associated with the source signal. 相似文献
3.
Hamilton-type geoacoustic models were developed for Area Foxtrot, a shallow water test bed south of Long Island, for emerging active sonar systems where the surface sediment type is highly spatially variable. Reverberation levels (RL) were modeled using the finite-element parabolic equation (FEPE) propagation model to augment the generic sonar model (GSM) propagation model because the bottom loss model in GSM did not estimate transmission loss (TL) accurately in shallow water. FEPE estimates reveal that there is a greater than 15 dB difference between TL for sand and that for silt-day sediments in Area Foxtrot. The comparison between modeled RL and measured RL (from a 1991 active sonar exercise) enabled bottom scattering strength kernels to be developed for Area Foxtrot. Bottom scattering strength was found to be a function of sediment type. Hard sand sediment has a bottom scattering strength which obeys Lambert's law (sin2 &thetas;) while that of silt-clay sediment is consistent with sub-bottom volume scattering (sine). The RLs in Area Foxtrot are azimuth-dependent and are a function of TL and bottom scattering strength (and hence bottom sediment type). Sonar beams steered towards the hard sand show higher RLs than for silt-clay, and knowledge of the sediment type and its spatial variation must be known to model RL accurately. A method to determine sediment type using measured RLs and RL slopes is given 相似文献
4.
A new coherent reverberation model developed at the Naval Research Laboratory, Washington, DC, and the Supreme Allied Commander Atlantic Undersea Research Centre, La Spezia, Italy, is exercised in the 17-750-Hz band to estimate the degree of non-Rayleighness of shallow-water reverberation envelopes as a function of waveguide multipath, system bandwidth, directivity, and frequency. Findings suggest that reverberation from diffuse, but non-Gaussian, scatterer distributions is significantly more Rayleigh for multipath environments than for equivalent environments excited by a single or small number of modes or for broadside receiver array processing that extracts narrow angles of reception. These findings suggest that the problem of non-Rayleigh reverberation in shallow-water waveguides can be ameliorated through the use of tuned ensonification and reception schemes, which retain high probabilities of detection while reducing the associated probability of false alarm. 相似文献
5.
We present a semiempirical model of the bottom turbulent boundary layer aimed at the application as one of the components
of the procedure of evaluation of the vertical distribution of the concentration of suspensions in the coastal region of the
sea. The model is based on data of laboratory experiments and is suitable for the sand bottom in a broad range of amplitudes
of the bottom velocities of the wave origin. 相似文献
6.
Acoustic propagation in shallow water is examined. Multipath propagation and extensive boundary interactions, which along with a host of other phenomena produce a highly variable and often unpredictable acoustic field, are discussed. The responsible mechanisms, and hence the acoustic effects, cover a wide range of temporal and spatial scales and are classified as either deterministic or random, although the two types often act in concert. Because of extensive interactions with the sound field, the bottom can severely degrade waterborne propagation, although the sea bottom (and subbottom) can provide a seismic path that not only is relatively stable, but exists even under environmental conditions that preclude an effective waterborne path. Propagation in the bottom is particularly significant at very low frequencies. These various aspects of shallow-water acoustics are illustrated using the results of experiments conducted in diverse geographic areas 相似文献
7.
To obtain the bistatic scattering function on the sandy ripple bottom, high-frequency bistatic sea-floor scattering measurements were made in the shallow waters off the east coast of Korea. A sand ripple field was present at the site, with wavelength generally in the 10-20-cm range. The mean ripple orientation relative to the direction of wave propagation was estimated to be roughly 20/spl deg/-30/spl deg/. Field experiments were made to measure forward (in-plane) and out-of-plane scattering from the ripple bottom. The measured scattering strengths were compared to the predictions of the APL-UW bistatic scattering model. Overall, forward-scattering strength measurements showed favorable comparison with the model predictions. The global scattering characteristics for the ripple bottom gave an augmented out-of-plane scattering. 相似文献
8.
High-frequency bistatic sediment scattering experiment was conducted in the shallow waters off the east coasts of Korea. Acoustic data were taken as a function of grazing angle (30°, 45°, and 60°), scattered angle (30°, 45°, and 60°), and bistatic (azimuthal) angle (0°, 60°, and 120°). Besides a flat bottom it was artificially raked so as to produce directional ripples. The measured scattering strengths for a flat bottom were compared to model predictions of D.R. Jackson et al. (1986). The surface reverberation component is seen to dominate over the volume scattering part at the frequency of 240 kHz. Compared to the flat bottom case, the scattering strengths for directional ripples showed lower and higher variation depending on the ripple's orientation 相似文献
9.
10.
The scattering of plane surface waves by bottom undulations in an ice-covered ocean modelled as a two-layer fluid consisting of a layer of fresh water of lesser density above a deep layer of salt water, is investigated here by using a simplified perturbation analysis. In such a two-layer fluid there exist waves of two different modes, one with higher mode propagates along the interface and the other with lower mode propagates along the ice-cover. An incident wave of a particular mode gets reflected and transmitted by the bottom undulations into waves of both the modes so that transfer of wave energy from one mode to another takes place. The first-order reflection and transmission coefficients of two different modes are obtained due to incident waves of again two different modes by employing Fourier transform technique in the mathematical analysis. For sinusoidal bottom topography these coefficients are depicted graphically against the wavenumber. These figures show how the transfer of energy from one mode to another takes place. 相似文献
11.
12.
For a two-dimensional linear wave scattering problem, a new transfer matrix incorporating evanescent modes is developed, from which the solution of a scattered wave field over a stepwise topography is directly obtained. The present method is shown to be capable of solving practical scattering problems with complicated bedforms, for which application of the conventional methods has been fairly limited. Highly accurate numerical solutions for sufficiently large systems are presented, and the computational efficiency of the present method is demonstrated. The interaction of bars in periodic beds is examined, and changes in the reflection coefficient with increasing number of bars are illustrated. 相似文献
13.
Berkson J. Kloosterman H. Akal T. Berrou J. 《Oceanic Engineering, IEEE Journal of》1985,10(3):299-302
Signals from an explosive source backscattered from the seafloor and received at long range by hydrophones of a towed array are processed to estimate the directional distribution of energy for a given time increment. As assembly of these data shows the time and amplitude of scattering features, and after conversion to distance, the geographic location of the return. A frequency-domain beam-forming procedure is used in which beam levels are averaged over a given band of a broad-band source. The processing is applied to experimental data obtained in the southern Tyrrhenian Sea. The major backscattering occurred at the Baconi Seamounts and the coastal margin of Sardinia. 相似文献
14.
Stanic S.J. Goodman R.R. Meredith R.W. Kennedy E. 《Oceanic Engineering, IEEE Journal of》2000,25(4):507-515
A shallow-water high-frequency (HF) acoustic propagation experiment was conducted just off shore in Panama City, FL. Several broad-band high-resolution sources and receivers were mounted on stable platforms and deployed in water depths of 8-10 m. Signals covering the frequency range from 20 to 200 kHz were transmitted from the sources to two spatially separated receivers. The data were analyzed to provide estimates of the signal phase variances as a function of frequency and source-to-receiver range. These phase variabilities are correlated with small-scale water column thermal variabilities and ocean swell conditions 相似文献
15.
A joint surface roughness/volumetric perturbation scattering theory is utilized to characterize the reverberation from a littoral ocean bottom. The result is a reflected field spectrum that consists of specular and off-specular components. The predicted scattering strength from the off-specular component is shown to be comprised of interface roughness scattering, sediment inhomogeneity volumetric scattering, and interface roughness/sediment inhomogeneity correlation scattering. The sediment inhomogeneity volumetric scattering is shown to contain two contributions that are due to fractional variations in sediment densities and sound velocities. Both contributions are shown to be affected by the interface effect by a round-trip transmission coefficient factor. These two fractional variations are shown to contribute differently to scattering strength but similarly to backscattering strength. Inversely predicted roughness spectra from various sets of backscattering strength data are shown to be consistent with a generally known roughness spectrum. Both inversely predicted roughness and volumetric scattering physical property spectra are found to be self-consistent. However, the use of only ocean bottom backscattering strength data is found to be insufficient to judge whether the roughness or the volumetric scattering dominates. Reverberation characterizations using bistatic scattering strength data and signal spread data are planned for future studies 相似文献
16.
High-resolution (<1 cm) roughness height measurements were made of the seafloor at seven locations on continental-shelf sediments on water depths ranging from 18 to 50 m. Roughness profiles of the sediment-water interface were digitized primarily from stereo photogrammetric measurements of varying pathlengths and increments. The data show that the root-mean-square roughness height varies from 0.3 cm for flat, featureless bottoms to 2.3 cm for rippled bottoms. Slopes of the roughness power spectra were calculated to be -1.5 to near -3.0 and depended to a large extent on contributions in higher spatial frequencies due to coarse sediments. Correlation lengths of different bottom types were estimated by using the Weiner-Khintchine theorem and examining the low-frequency behavior of the roughness spectra derived from the longest roughness profiles 相似文献
17.
Badiey M. Yongke Mu Simmen J.A. Forsythe S.E. 《Oceanic Engineering, IEEE Journal of》2000,25(4):492-500
Coherence of broad-band acoustic waves for mid-to-high frequencies (0.6-18 kHz) is obtained for a very shallow-water (15-m-deep) waveguide over a wide band of environmental conditions and for a source-receiver range of 387 m. Temporal behavior is sampled at two different rates: one that resolves at fractions of a second over intermittent periods of 40 s and another that resolves at 10 min over periods of several days. Spatial behavior is sampled in the vertical by hydrophones with spacings of the order of meters. The effect of environmental variability on coherence, in particular, soundspeed fluctuations in the water column and wind-induced modulations of the air-sea interface, is noted as a function of acoustic frequency and ray path. Analysis of the acoustic fluctuations over short time scales more accurately resolves the temporal decorrelation of the received signal due to sea surface waves. The vertical sampling of the received signal permits an analysis of arrival-angle fluctuations. The dependence of coherence on the number of surface bounces is studied by comparing arrivals that have zero, one, two, and three surface bounces 相似文献
18.
A coupled-mode model is developed for treating the wave–current–seabed interaction problem, with application to wave scattering by non-homogeneous, steady current over general bottom topography. The vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus additional terms accounting for the satisfaction of the free-surface and bottom boundary conditions. Using the above representation, in conjunction with unconstrained variational principle, an improved coupled system of differential equations on the horizontal plane, with respect to the modal amplitudes, is derived. In the case of small-amplitude waves, a linearised version of the above coupled-mode system is obtained, generalizing previous results by Athanassoulis and Belibassakis [J Fluid Mech 1999;389:275–301] for the propagation of small-amplitude water waves over variable bathymetry regions. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to an one-equation model, that is shown to be compatible with mild-slope model concerning wave–current interaction over slowly varying topography, and in the case of no current it exactly reduces to the modified mild-slope equation. The present coupled-mode system is discretized on the horizontal plane by using second-order finite differences and numerically solved by iterations. Results are presented for various representative test cases demonstrating the usefulness of the model, as well as the importance of the first evanescent modes and the additional sloping-bottom mode when the bottom slope is not negligible. The analytical structure of the present model facilitates its extension to fully non-linear waves, and to wave scattering by currents with more general structure. 相似文献
19.
A high-frequency, shallow-water acoustic measurement system 总被引:2,自引:0,他引:2
《Oceanic Engineering, IEEE Journal of》1988,13(3):155-162
The US Naval Ocean Research and Development Activity has developed a high-frequency acoustic measurement system for use in shallow water. The heart of this system is a pair of submersible towers supporting acoustic transmitting and receiving instrumentation. These towers are transported to an experimental staging area, assembled, and acoustic instrumentation installed. They are towed to a preselected measurement site, then the chambers on each tower are flooded, thereby settling slowly to the ocean bottom. Stability and dynamic response analyses were used to determine the towing and deployment stability envelopes for the towers. The acoustic transmitting system uses a pair of narrow-beam parametric acoustic sources operating at secondary frequencies ranging from 20 to 180 kHz. The acoustic receiving systems consist of a pair of 16-hydrophone, two-dimensional arrays with broadband capabilities up to 250 kHz. These systems have been used to make high-resolution bottom scattering measurements in shallow water off the coast, south of Panama City, Florida 相似文献
20.
This paper presents an evaluation of second, third, and fourth-order moments for the passive detection of transient signals in both simulated Gaussian noise and measured noise. The measured noise was recorded by a vertical array located near the San Diego, CA, harbor and is dominated at low frequencies by ship-generated noise. The detectors assume neither noise nor signal stationarity and can use single or multiple channels of data. Simulation results indicate that the fourth-order moment detector often performs better than the energy detector in the correlated measured noise, with increasing channel contributions to the moment function, resulting in increased gain. The results in simulated Gaussian noise likewise favor the fourth-order moment detector, at least for the signals with significant fourth-order moments, but the ability of the higher order detector to discriminate against correlated noise is evident. Analysis over a 30-min segment of the measured noise with selected signals demonstrates that fourth-order detection gains can be reliably expected as the noise statistics change. 相似文献