首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Soil degradation resulted from unreasonable land use and erosion has been a serious problem in the black soil region of northeastern China. This paper seeks to understand the relationships between topsoil properties and topography and land use for land management targeting at improving soil quality in this region. A total of 292 soil samples and 81 volumetric rings were taken from a typical small watershed of the region in June 2005 for examining total carbon (TC), total nitrogen (TN), soil texture (classified into gravel, sand, silt, and clay), and bulk density (ρ b), respectively. Spatial variability of these soil properties was evaluated with classical statistics and geostatistics methods. The results of classical statistics indicated that TC, TN, sand, silt, clay content, and ρ b were moderate variables while gravel had great variability. Soil properties were mainly correlated to slope position, elevation and land types. Geostatistical analyses showed that the spatial autocorrelation for TC, TN, and silt was weak, strong for clay and moderate for and ρ b sand, respectively. The spatial variations of soil properties are affected comprehensively by topographic factors, land use, erosion, and erosion control in this watershed. Past erosion, however, is the most important component to induce change of soil properties. In this small watershed, current soil and water conservation measures play an important role in controlling soil loss. But the restoration of soil properties was unsatisfactory. Comparing with untilled soil of this region, TC, TN, silt content are excessively low; whereas ρ b, sand and clay content are excessively high; gravel appears at most sampling locations. It is necessary for improving soil properties to protect forest and grassland and change cultivation system of farmlands.  相似文献   

2.
This study aims to explore the possibility for estimating K0 in a level ground of granular soil by seismic methods on the basis of micromechanics theory. The idea was to simulate in situ cross‐hole seismic method for the measurement of wave velocities along various directions of wave‐propagation. This work made use of a field simulator to control a K0 condition (zero lateral strain condition) in specimens. A series of vertical loading containing subsequent loading and unloading were applied to the specimen prepared by pluviation. In general, the K0 values determined experimentally in this work agreed with the exiting empirical relations. K0 value was also calibrated from measured anisotropic wave velocities using an optimization procedure. From the comparison of the back‐calculated and measured results of K0, it revealed the feasibility for the determination of the in situ lateral stress in granular soil by seismic methods and on the basis of micromechanics theory as long as enough wave‐velocity measurements along various directions of wave‐propagation were available. The potential for the usage of the presented methodology for the determination of the in situ lateral stress in level‐ground of granular soil by seismic methods seems encouraging. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, liquefaction potential of soil is evaluated within a probabilistic framework based on the post-liquefaction cone penetration test (CPT) data using an evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). Based on the developed limit state function using MGGP, a relationship is given between probability of liquefaction (PL) and factor of safety against liquefaction using Bayesian theory. This Bayesian mapping function is further used to develop a PL-based design chart for evaluation of liquefaction potential of soil. Using an independent database of 200 cases, the efficacy of the present MGGP-based probabilistic method is compared with that of the available probabilistic methods based on artificial neural network (ANN) and statistical methods. The proposed method is found to be more efficient in terms of rate of successful prediction of liquefaction and non-liquefaction cases, in three different ranges of PL values compared to ANN and statistical methods.  相似文献   

4.
Abiotic regulators of soil respiration in desert ecosystems   总被引:1,自引:0,他引:1  
Soil temperature and soil moisture are the most important environmental factors controlling soil respiration in mesic ecosystems. However, soil respiration and associated abiotic regulators have been poorly studied in desert ecosystems. In this study, soil respiration was measured using an automated CO2 efflux system (LI-COR 8100), and the effects of soil temperature and moisture on the rate of soil respiration were examined in six desert sites [three communities—Haloxylon ammodendron, Halostachys caspica and Anabasis aphylla at high (B) and low (A) vegetation coverage respectively]. It was found that soil respiration was significantly and positively correlated with soil surface temperature. A multi-variable model of soil temperature and soil moisture could explain 61.9% of temporal variation in soil CO2 efflux at a larger scale. There were significantly negative correlations between soil respiration and soil moisture in Haloxylon ammodendron B and Halostachys caspica B sites, which represented the driest and wettest sites, respectively. The results also showed that soil respiration displayed obvious diurnal and seasonal patterns during the growing season. The Q10 values for Haloxylon ammodendron A and B, Halostachys caspica A and B, and Anabasis aphylla A and B sites were 1.3, 1.34, 1.58, 1.65, 1.31 and 1.17, respectively, with a cross-site average of 1.39. The results showed that soil respiration was not positively correlated with soil moisture unlike in most mesic ecosystems. However, soil respiration in desert ecosystems is less sensitive to temperature variation than most mesic ecosystems as indicated by the lower Q10 values possibly due to energy limitation.  相似文献   

5.
The continuous coniferous forest in the Tianshan Mountains primarily consists of Picea schrenkiana. The forest forms an unbroken 1,000 km forest zone extending from west to east on the northern slope of the Tianshan Mountains, where environmental conditions such as precipitation, temperature and terrain vary greatly. To gain insight into the differences between soil properties at the upper and lower limits of P. schrenkiana, soil underlying the forests was studied along 4 transects located at Jinghe, Manasi, Fukang, and Balikun, where the natural conditions are typical and therefore representative of western, mid-western, mid-eastern and eastern portions of the Tianshan Mountains. The soil type under the coniferous forest on the northern slope of the Tianshan Mountains is gray cinnamon forest soil. For each transect, soil samples were collected from three different depths (0–5, 5–30 and 30–70 cm) in the area near the upper and lower limits of P. schrenkiana. A total of 48 soil samples were collected from 16 soil profiles and analyzed in two different laboratories. The soil pH, organic matter (OM), total N, total P, CaCO3, and electrical conductivity (EC) were analyzed using common pedological methods. The continuous distribution of P. schrenkiana on the northern slope of the Tianshan Mountains was caused by combined water-heat conditions and pedological factors. At the upper and lower tree limits, where differences existed in the soil parent materials, precipitation, topography, combined water-heat conditions, and local atmospheric pattern, the soil properties showed a close relationship with the local environmental conditions. Due to the presence of high precipitation over the Manasi transect, the soil was fertile and had a low CaCO3 content. In contrast, low soil fertility with high CaCO3 was observed in the soil along the Jinghe and Balikun transects, where there was low precipitation. Although the soil properties varied on the northern slope of the Tianshan Mountains due to the presence of different environmental conditions across the 1,000-km forest zone, this region was suitable for the growth of P. schrenkiana. Taken together, the results of this study indicated that soil played an important role in controlling the continuous distribution of the P. schrenkiana along the northern slope of the Tianshan Mountains.  相似文献   

6.

The site characterization of unsaturated soils is well stablished based on laboratory tests, which are expensive and time-consuming. In-situ testing methods, such as the flat dilatometer test (DMT), are an alternative to the traditional approach of drilling, sampling, and laboratory testing. The literature on DMT interpretation is well established on saturated and well-behaved soils. Only few studies deal with DMT interpretation in unusual soils, and little is known about the influence of soil suction on this test. This paper presents and discusses the influence of soil suction on four DMT campaigns carried out in an unsaturated tropical soil site, also incorporating the soil suction influence on the DMT interpretation. Soil suction was estimated by the soil–water characteristic curve (SWCC) and water content profiles. The water content profiles range from 11.3 to 19.7% which corresponds to a suction range estimated by SWCCs mostly between 6 and 200 kPa. Soil suction significantly influenced DMT data up to 5 m depth at the studied site (the unsaturated active zone) increasing the intermediate DMT parameters. The average horizontal stress index (KD) was equal to about 1.7 and the average dilatometer modulus (ED) was about 4.7 MPa in the active zone and practically doubled their values due to in situ soil suction. The estimated peak friction angle (?) was 20–30% higher due to soil suction influence on DMT assuming the soil behaves as a sand like material. Soil suction must be considered to assess the behavior of the investigated soil by the DMT. The suction influence should be incorporated in the effective stress and this approach considerably improved the site characterization of the studied site.

  相似文献   

7.
An interactive computer program “GLAMCPT” is developed for application in soil profiling and prediction of pile load capacity using cone penetration test (CPT) and laboratory soil test results. GLAMCPT calculates pile capacity according to 10 selected methods from European design codes, refereed international publications and recommendations of professional institutions. To demonstrate the capabilities of the program, a database of comprehensive ground investigation and full-scale pile tests in sand, at a Belgian site, is analysed using GLAMCPT. The database comprises 11 static tests and 12 dynamic tests on piles of different construction techniques, including driven pre-cast concrete piles and screwed cast in-situ piles, installed using 5 different procedures. Prior to pile installation, CPTs were carried out at each proposed pile location. Comparison of GLAMCPT predictions with the observed pile capacities reveals that the most accurate of the existing methods yields an average, μ, of predicted to observed pile head capacity [Puh(p)/Puh(m)] equal to 0.94. The most consistent method produces a coeffcient of variation (COV) of [Puh(p)/Puh(m)] equal to 0.1 and ranking index (RI) of 0.08. Parametric studies have been carried out using GLAMCPT to formulate an improved predictive method, which yielded: μ = 0.99, COV = 0.07 and RI = 0.04.  相似文献   

8.
In the high-permeability, semiarid carbonate aquifer in the Sierra de Gádor Mountains (southeastern Spain), some local springs draining shallow perched aquifers were of assistance in assessing applicability of the atmospheric chloride mass balance (CMB) for quantifying total yearly recharge (R T) by rainfall. Two contrasting hydrological years (October through September) were selected to evaluate the influence of climate on recharge: the average rainfall year 2003–2004, and the unusually dry 2004–2005. Results at small catchment scale were calibrated with estimated daily stand-scale R T obtained by means of a soil water balance (SWB) of rainfall, using the actual evapotranspiration measured by the eddy covariance (EC) technique. R T ranged from 0.35 to 0.40 of rainfall in the year, with less than a 5% difference between the CMB and SWB methods in 2003–2004. R T varied from less than 0.05 of rainfall at mid-elevation to 0.20 at high elevation in 2004–2005, with a similar difference between the methods. Diffuse recharge (R D) by rainfall was quantified from daily soil water content field data to split R T into R D and the expected concentrated recharge (R C) at catchment scale in both hydrological years. R D was 0.16 of rainfall in 2003–2004 and 0.01 in 2004–2005. Under common 1- to 3-day rainfall events, the hydraulic effect of R D is delayed from 1 day to 1 week, while R C is not delayed. This study shows that the CMB method is a suitable tool for yearly values complementing and extending the more widely used SWB in ungauged mountain carbonate aquifers with negligible runoff. The slight difference between R T rates at small catchment and stand scales enables results to be validated and provides new estimates to parameterize R T with rainfall depth after checking the weight of diffuse and concentrated mechanisms on R T during moderate rainfall periods and episodes of marked climatic aridity.  相似文献   

9.
王尧  田衎  封跃鹏  王伟 《岩矿测试》2021,(4):593-602
土壤环境标准样品是土壤生态环境监测质量控制的重要技术工具.目前,土壤中总有机碳环境标准样品仍为中国环境标准样品体系的空缺,特别是配套燃烧氧化-非分散红外法的土壤标准样品一直未曾问世.本文以有机碳含量较高的农用地土壤为原材料,经干燥、研磨、混匀、装瓶、灭菌等加工步骤,制备获得土壤中总有机碳环境标准样品.分层随机抽取10瓶...  相似文献   

10.
ABSTRACT

Probabilistic methods in geotechnical engineering have received a lot of attention during the last decade and different methodologies are used to capture the inherent variability of soil in different geotechnical engineering problems. In this paper, numerical simulations are conducted to obtain the bearing capacity factor, Nγ, for a purely frictional heterogenous soil where the friction angle is modelled as randomly distributed throughout the domain and the effect of its spatial variability on Nγ is investigated. A finite element method, based on the upper bound limit analysis was combined with random field theory and linear programming to develop a probabilistic analysis. Monte Carlo simulations were performed and the effect of the variability of the friction angle defined by statistical parameters on the bearing capacity factor was investigated. Results show that the mean bearing capacity factor Nγ of a footing on a spatially variable cohesionless soil is generally higher than the deterministic Nγ obtained from a constant mean value. Increasing the heterogeneity of the friction angle by an increase in the coefficient of variation generally increases this deviation. This can be explained by the nonlinearity of the relationship between Nγ and the friction angle.  相似文献   

11.
Groundwater bearing alluvial units in the seismically active settlement areas may bring out probable damage on the urban and built environment due to liquefaction. Bolu settlement area and surroundings are located in the North Anatolian Fault Zone. Geotechnical boreholes were drilled in order to determine the distribution of the geological units, to obtain representative soil samples and to measure groundwater level. Quaternary aged alluvium is the main geological unit in the South of study area. Stiffness and consistency of the soils were determined by Standart penetration test. P and S wave velocities of soil have been measured along the seismic profiles. The index and physical properties of the samples have also been tested in the laboratory. Liquefaction potential and safety factor of the sandy levels in Quaternary aged alluvium were investigated by different methods based on SPT and V s. Liquefaction seems to be a significant risk in case of an earthquake with a max = 0.48 g and M w = 7.5 at different levels of the boreholes. This situation may bring out environmental problems in the future.  相似文献   

12.
Chemical methods are generally chosen to monitor soil pollution but magnetic measurements proved to yield additional information at low cost and less time consumption. In this investigation, the novel use of rapid and non-destructive magnetic measurements to characterize Br levels in Xuzhou (China) urban roadside soils was reported. X-ray fluorescence spectrometry (XRF) was used to quantify Br in the soil samples. Data from 21 roadside soil samples confirm Br contamination, with a mean level of 4.36 mg kg−1 and a range of 2.4–8.7 mg kg−1. These values are higher than that of unpolluted soils in Xuzhou that averages 1.1 mg kg−1. Hierarchical clustering analysis shows Br in Xuzhou roadside soils is mainly from road traffic. Clear correlations between Br levels and simple magnetic parameters [mass specific susceptibility (χ LF), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanence (SIRM)] are observed. The present study shows that these three magnetic parameters can be used as a proxy for Br levels in Xuzhou urban roadside soils.  相似文献   

13.
The variation and distribution of temperature and water moisture in the seasonal frozen soil is an important factor in the study of both the soil water cycle and heat balance within the source region of the Yellow River, especially under the different conditions of vegetation coverage. In this study, the impact of various degrees of vegetation coverage on soil water content and temperature was assessed. Soil moisture (θ v) and soil temperature (T s) were monitored on a daily basis. Measurements were made under different vegetation coverage (95, 70–80, 40–50 and 10%) and on both thawed and frozen soils. Contour charts of T s and θ v as well as a θ vT s coupling model were developed in order to account for the influence of vegetation cover and the interaction between T s and θ v. It was observed that soil water content affected both the overall range and trend in the soil temperature. The regression analysis of θ v versus T s plots indicated that the soil freezing and thawing processes were significantly affected by vegetation cover changes. Vegetation coverage changes also caused variations in the θ vT s interaction. The effect of soil water content on soil temperature during the freezing period was larger than during the thawing period. Moreover, the soil with higher vegetation coverage retained more water than that with lower coverage. In the process of freezing, the higher vegetation coverage reduced the rate of the reduction in the soil temperature because the thermal capacity of water is higher than that of soil. Areas with higher vegetation coverage also functioned better for the purpose of heat-insulating. This phenomenon may thus play an important role in the environmental protection and effective uses of frozen soil.  相似文献   

14.
Shear wave velocity (V s) is one of the most important input parameter to represent the stiffness of the soil layers. It is preferable to measure V s by in situ wave propagation tests, however it is often not economically feasible to perform the tests at all locations. Hence, a reliable correlation between V s and standard penetration test blow counts (SPT-N) would be a considerable advantage. This paper presents the development of empirical correlations between V s and SPT-N value for different categories of soil in Chennai city characterized by complex variation of soil conditions. The extensive shear wave velocity measurement was carried out using Multichannel Analysis of Surface Waves (MASW) technique at the sites where the SPT-N values are available. The bender element test is performed to compare the field MASW test results for clayey soils. The correlations between shear wave velocity and SPT-N with and without energy corrections were developed for three categories of soil: all soils, sand and clay. The proposed correlations between uncorrected and energy corrected SPT-N were compared with regression equations proposed by various other investigators and found that the developed correlations exhibit good prediction performance. The proposed uncorrected and energy corrected SPT-N relationships show a slight variation in the statistical analysis indicating that both the uncorrected and energy corrected correlations can predict shear wave velocity with equal accuracy. It is also found that the soil type has a little effect on these correlations below SPT-N value of about 10.  相似文献   

15.
Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Agricultural soils are regarded as one potential sink for atmospheric CO2 via photosynthetic fixation in plant biomass and subsequent transformation into soil organic matter upon soil diagenesis. The difference in C-isotope signatures of C3- vs. C4-plants allows for a natural isotopic labelling of soil organic matter after changes from C3- to C4-cropping. In this study, we demonstrate that isotopic shifts are paralleled by molecular signatures of C3- vs. C4-crop alkyl lipids. Turnover times vary significantly, based on cropping techniques. For grain-maize cropped soils at steady state average turnover times of 40 years for bulk SOC, 35 years for n-alkanes and 21 years for n-carboxylic acids were determined. Turnover times for silage-maize cropped soil at steady state were on average 250 years for bulk SOC, 60 years for n-alkanes and 49 years for n-carboxylic acids. Turnover times reported here for silage-maize cropped soils may be taken as maximum values only, because they derive from a single trial, which was affected by addition of anthropogenic refractory carbon. Discrimination of input from various plant parts (roots, stems and leaves) based on bulk C-isotopes is not feasible but can easily be achieved using compositions of carboxylic acids, especially the ratio of n-C24 vs. n-C22+26 and their respective C-isotope values. This enables delineation of the influence of different cropping techniques, e.g., silage- or grain-maize, on carbon storage in soils. Admixture of external sources of organic matter to the soil organic carbon pool of an urban site in Halle, Germany was identified based on alkyl lipid distributions. Nearby lignite mining was identified as a source for non-crop-derived alkyl lipids, primarily based on the elevated n-C26-carboxylic acid content and heavier carbon isotopic signatures.  相似文献   

17.

This paper examines the effect of heavy tamping (dynamic compaction) on highly porous structured residual clayey soil. The aim of this study is to analyse the feasibility of this technique when applied on lightly bonded residual soil sites, which are commonly found in tropical and subtropical regions. This soil has some interesting characteristics, such as high fine grain soil percentages (56% clay and 22% silt), a plastic index of 11%, high porosity (initial void ratio of 1.21), high hydraulic conductivity (about 10?5 m/s) and a high stiffness at small strains (E?=?49.2-MPa). The research involves field [Cone Penetration Test (CPT) and the dynamic compaction] and laboratory (triaxial tests, characterization and hydraulic conductivity) investigation. According to laboratory tests, the void ratio decreased to 0.96, hydraulic conductivity decreased to 2.8?×?10?7 m/s, the effective peak friction angle (?′) increased from 30.5° (in natural conditions) to about 35.5°, and the triaxial stiffness at small strains decreased to E?=?20-MPa due to dynamic compaction. CPT results have shown an improved depth in which CPT tip strength (qt) increased from nearly 650-kPa to an average of 1700-kPa and CPT sleeve friction (fs) increased from approximately 50-kPa to about 130-kPa. Horizontal displacements were observed up to about 4.0 m of depth (approximately the same depth at which CPT results showed soil improvement). It was concluded that heavy tamping reduces soil voids and substantially increases soil strength, but also breaks soil structure and decreases soil stiffness. It is thus not a suitable ground improvement solution for highly porous structured residual clayey soil.

  相似文献   

18.
 Selenomethionine (SeM) is an organic toxicant that is present in seleniferous environments. No kinetic data is yet available regarding SeM reactions in coal mine environments, where selenium (Se) toxicity is a potential concern. A kinetic study was conducted on two reclaimed coal mine soils (Typic Torriorthents) from Wyoming having sandy and clayey textures. Four levels of SeM treatments (0, 50, 100 μM, and plant amendment from the mine vegetation) were reacted with the soils for 4, 7, 14, 28, 42, 56, and 84 days to characterize the kinetic behavior of overall SeM disappearance from soil solutions. Detection of SeM in soil solutions at the control level (0 μM SeM) indicated occurrence of indigenous SeM in the soils. In the plant-amended soil solutions, much greater concentrations of SeM were observed as compared with the soil-only systems. This indicated the plant material was a more potential source of SeM than the mine soils. A time-dependent loss in solution SeM concentrations was observed for both soils under 0, 50, 100 μM SeM treatments. For the soil-plant mixtures, the solution SeM concentration increased initially, reached a maximum after 14 days, and then decreased thereafter. In the plant-amended soil solutions, SeM concentrations at all time intervals were higher for the sandy as compared to the clayey soil. At 50 and 100 μM SeM treatments, the solution pH was linearly related to the percentages of SeM disappeared from the solutions; greater percentage of SeM was removed from solutions at comparatively lower pH levels, which was ≥90% at pH 7.7 for both soils. Solution SeM concentrations decreased exponentially with time following first-order kinetic reactions. Under all applications (except for the control), C 0 (SeM concentration at t=0) values for the sandy soil were greater than those determined for the clayey soil, indicating higher solution SeM availability for the former and more SeM retention by the latter at t=0. Comparison of C 0 in controls (0 μM SeM addition) suggested greater indigenous SeM in the clayey soil. For both soils, C 0 values under different treatments followed the order, (soil+100 μM)>(soil+50 μM)>(soil+0 μM). The specific reaction rate constants (K r) of SeM for both soils were similar (0.031 and 0.029 day–1 for sandy and clayey soils, respectively); low K r values indicated that SeM loss from our reclaimed coal mine soil solutions would follow rather slow kinetics. The half-life (t 0.5) of SeM varied from 15 to 55 days depending on treatment level. The knowledge obtained from this study should contribute in developing time-based Se reclamation strategies in coal mine environments. Received: 18 September 1995 · Accepted: 28 December 1995  相似文献   

19.
Determination of the in situ engineering properties of foundation materials has always been a challenge for geotechnical engineers and, thus, several methods have been developed so far. Dynamic Cone Penetration (DCP) test is one of the most versatile amongst them. In the present research, a light weight simple DCP device was developed and used for evaluation of the engineering properties of sandy soils in laboratory conditions. The device consisted of an 8-kg hammer that drops over a height of 575 mm, and drives a 60° cone tip with 20 mm base diameter into the ground. To control the validation of the results, laboratory direct shear and plate load tests were used as reference tests. The soil sample was a poorly graded sandy soil (SP) taken from alluvial deposits of the Tehran plain. All DCP tests and PLTs were undertaken on compacted soil in a mould with 700 mm diameter and 700 mm height. Based on the results of the experiments, the relationships between Dynamic Penetration Index (DPI), relative density (Dr), modulus of elasticity (E), shear modulus (G), modulus of subgrade reaction (KS), and the friction angle of the soil were obtained with a high coefficient of determination (> 90%). The repeatability of the test results was also evaluated by calculating the coefficient of variations (Cv), which was less than 30% for all tests.  相似文献   

20.
High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater. To study the transformation mechanism of NH4+-N by nitrifying functional bacteria in tannery sludge contaminated soils, a series of contaminated soil culture experiments were conducted in this study. The contents of ammonium nitrogen (as NH4+-N), nitrite nitrogen (as NO2?-N) and nitrate nitrogen (as NO3?-N) were analyzed during the culture period under different conditions of pollution load, soil particle and redox environment. Sigmodial equation was used to interpret the change of NO3?-N with time in contaminated soils. The abundance variations of nitrifying functional genes (amoA and nxrA) were also detected using the real-time quantitative fluorescence PCR method. The results show that the nitrification of NH4+-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load, finer particle size and more oxidizing environment. The sigmodial equation well fitted the dynamic accumulation curve of the NO3?-N content in the tannery sludge contaminated soils. The Cr(III) content increased with increasing pollution load, which inhibited the reproduction and activity of nitrifying bacteria in the soils, especially in coarse-grained soil. The accumulation of NO2?-N contents became more obvious with the increase of pollution load in the fine sand, and only 41.5% of the NH4+-N was transformed to NO3?-N. The redox environment was the main factor affecting nitrification process in the soil. Compared to the aerobic soil environment, the transformation of NH4+-N was significantly inhibited under anaerobic incubation condition, and the NO3?-N contents decreased by 37.2%, 61.9% and 91.9% under low, medium and high pollution loads, respectively. Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand. Moreover, the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment. The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号