首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SIGMA X-ray telescope accumulated the images of more than a quarter of the sky during the in-orbit operation of the GRANAT observatory. The longest exposure time (~9 million s) was spent on the observations of the Galactic center region. We give an overview of the SIGMA X-ray observations and report the sensitivities achieved in various regions of the sky.  相似文献   

2.
A review of the HAXTEL project devoted to the development of a Laue lens telescope for hard X-/gamma-ray observation of the continuum spectra of celestial sources is presented. Main design properties, open issues, the status of the project and an example of multi-lens configuration with sensitivity expectations are discussed.  相似文献   

3.
A new imaging balloon-borne telescope for hard X-rays in the energy range from 30 to 100 keV is described. The imaging capability is provided by the use of an extended URA-based coded-mask. With only one motor and suitable stop pins, we can rotate a carbon-fiber wheel with most of the mask elements attached to it by 180°, and a bar, which is also part of the mask pattern and is allowed to rotate freely over the wheel, by 90°; this combined rotation creates an antimask of the original mask, except for the central element. This is a novel and elegant manner of providing an antimask without additional weight and complex mechanical manipulations. We show that the use of antimasks is a very effective method of eliminating systematic variations in the background map over the position-sensitive detector area. The expected sensitivity of the instrument for the 30–100 keV range is of the order of 7 × 10-5 photons cm-2 s-1 keV-1, for an integration time of 104 seconds at a residual atmosphere of 3.5 g cm-2. This telescope will provide imaging observations of bright galactic hard X-ray sources with an angular resolution of 2° in a 10° by 10° FOV, which is defined by a collimator placed in front of the detector system. We are particularly interested in the galactic center region, where recent imaging results in X-rays have shown the presence of an interesting source field. Results of computer simulations of the imaging system are reported.  相似文献   

4.
From a systematic analysis of the available balloon data for searching variabilities in the time-scales of days for Cyg X-1, the first evidence for the existence of a distinct phase dependence of intensity at 30 keV, corresponding to a period of 5.6 days, is presented. Additionally, the existence of a two-state X-ray emission at these energies is also indicated. Implications of these variabilities on the existing models of Cyg X-1 are discussed.  相似文献   

5.
We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM–X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= ̳LARge ̳Italian ̳X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.  相似文献   

6.
7.
I report further developments of the Wainscoatet al. (1992) (hereafter WCVWS) model of the point source sky. The newest version of this model now predicts cumulative or differential source counts, and integrated surface brightness of the sky due to smeared point sources, in any direction, for any infrared filter with passband within the range 2.0–35.0µm. The realistic representation of the Galaxy (disk, spiral arms and local spur, molecular ring, bulge, halo) and the extragalactic sky has been improved, guided by CO surveys of local molecular clouds. The newest version of the model is very well-validated by IRAS source counts; works well at B and V, even in the plane; and operates successfully in the far-ultraviolet (FUV). Applications discussed are: interpreting the new TMGS near-infrared survey of the plane; confusion in sky surveys; and seeking cosmological background radiation.  相似文献   

8.
Solar hard X-ray bursts   总被引:3,自引:0,他引:3  
Brian R. Dennis 《Solar physics》1985,100(1-2):465-490
The major results from SMM are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152–158 day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SMM data are presented for examples of type B and type C events. New results are presented showing coincident hard X-rays, O v, and UV continuum observations in type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.  相似文献   

9.
We report on two optical candidates for the counterpart to an X-ray source in the Small Magellanic Cloud , 1WGA J0053.8−7226, identified as a serendipitous X-ray source from the ROSAT Position Sensitive Proportional Counter (PSPC) archive, and also observed by the Einstein Imaging Proportional Counter . Its X-ray properties, namely the hard X-ray spectrum, flux variability and column density, indicate a hard, transient source, with a luminosity of ∼     XTE and ASCA observations have confirmed the source to be an X-ray pulsar, with a 46-s spin period. Our optical observations reveal two possible candidates within the error circle. Both exhibit strong H α and weaker H β emission. The optical colours indicate that both objects are Be-type stars. The Be nature of the stars implies that the counterpart is most likely a Be/X-ray binary system. Subsequent infrared (IR) photometry ( JHK ) of one of the objects shows that the source varies by at least 0.5 mag, while the     measured nearly simultaneously with the UBVRI and spectroscopic observations indicate an IR excess of ∼0.3 mag.  相似文献   

10.
In 2004 and 2005 CNES decided to perform phase 0 studies on 4 scientific missions: ASPICS (Solar physics), MAX (γ-rays Laue lens), PEGASE (hot Jupiter study by an interferometer in the 2μm to 4.5μm range) and SIMBOL-X (hard X-rays telescope). This last mission had already undergone a feasibility study in 2003 (ref. [4]), however a complementary study was necessary to take into account the possibilities of increasing the payload mass allowance, as well as the developments in the payload design and science goals (see ref. [1]). The output of this new detailed study is described hereafter.  相似文献   

11.
T. Takakura 《Solar physics》1984,91(2):311-324
In some gradual hard X-ray bursts with high intensity, hard X-ray source (15–40 keV) is steadily located in the corona along with softer X-ray source (5–10 keV).Two stationary models, high density and high temperature models, are proposed to solve the difficult problem of confinement of hot (or nonthermal) plasma in the direction of the magnetic field along the loops in the corona. In both models, an essential point is that the effective X-ray source is composed of fine dense filamentary loops imbeded in a larger rarefied coronal loop, and the electron number density in the filaments is so high as 1011–1012 cm-3. If the density is so high heat conduction can be as reasonably small as of the order of 1027 erg s -1 for the given emission measures of observed X-rays, since the required cross-sectional area is small and also classical conduction is valid. Collisional confinement of thermal tail, and nonthermal electrons if any, up to 50–60 keV in the filaments is also possible, so that the hard X-ray images can be loop like structure instead of double source (foot points).High density model is applicable to the coronal filamentary loops with temperature T m < 5 × 107 K at the loop summit. The heat flow from the summit downwards is lost almost completely by the radiation from the loop during the conduction to the foot points. A continuous energy release is assumed near the summit to maintain the stationary temperature T m, and pressure balance is maintained along the loop. In this model, the number density at the summit is given by n m - 106 T m 2 /sm, where s m is the length of the loop from the summit to the foot point, and the distribution of temperature and density along the loop are given by T = T m(s/sm)1/3 and n = n m(s/sm)-1/3, respectively.High temperature model is applicable to the filamentary loops with higher temperature up to about 108.5 K and comparatively lower number density as 1011 cm-3 for the requirement of magnetic confinement of the hot plasma in radial direction. The radiation from the loop is negligibly small in this model so that the heat flux is nearly conserved down to the foot points. In this case, temperature gradient is smaller than that of the high density model, depending on the tapering of the magnetic bottle.In both models, the differential emission measure is maximum at the highest temperature T m and the brightness distribution along the loop shows a maximum around the summit of the loop if some magnetic tapering is taken into account.  相似文献   

12.
Solar flare hard X-ray observations   总被引:2,自引:0,他引:2  
Recent hard X-ray observations of solar flares are reviewed with emphasis on results obtained with instruments on the Solar Maximum Mission satellite. Flares with three different sets of characteristics, designated as Type A, Type B, and Type C, are discussed and hard X-ray temporal, spatial, spectral, and polarization measurements are reviewed in this framework. Coincident observations are reviewed at other wavelengths including the UV, microwaves, and soft X-rays, with discussions of their interpretations. In conclusion, a brief outline is presented of the potential of future hard X-ray observations with sub-second time resolution, arcsecond spatial resolution, and keV energy resolution, and polarization measurements at the few percent level up to 100 keV.  相似文献   

13.
SIMBOL-X is a hard X-ray mission based on a formation flight architecture, operating in the 0.5–80 keV energy range, which has been selected for a comprehensive Phase A study, being jointly carried out by CNES and ASI. SIMBOL-X makes uses of a long (in the 25–30 m range) focal length multilayer-coated X-ray mirrors to focus for the first time X-rays with energy above 10 keV, resulting in at least a two orders of magnitude improvement in angular resolution and sensitivity compared to non focusing techniques used so far. The SIMBOL-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics, related in particular to the physics and energetic of the accretion processes on-going in the Universe, also performing a census of black holes on all scales, achieved through deep, wide-field surveys of extragalactic fields and of the Galactic center, and the to the acceleration of electrons and hadrons particles to the highest energies. In this paper, the mission science objectives, design, instrumentation and status are reviewed. PACS: 95.55 – Astronomical and space-research instrumentation 95.85 – Astronomical Observations 98.85.Nv – X-ray  相似文献   

14.
We analyze uncertainties in the cosmic X-ray background measurements performed by the INTEGRAL observatory. We find that the most important effect limiting the accuracy of the measurements is related to the intrinsic background variation in detectors. Taking into account all of the uncertainties arising during the measurements we conclude that the X-ray background intensity obtained in the INTEGRAL observations is compatible with the historic X-ray background observations performed by the HEAO-1 satellite.  相似文献   

15.
We present the results of the analysis of Rossi X-ray Timing Explorer ( RXTE ) observations of the new X-ray transient, SWIFT J1753.5−0127, during its outburst in 2005 July. The source was caught at the peak of the burst with a flux of 7.19e-09 erg s−1cm−2 in the 3–25 keV energy range and observed until it decreased by about a factor of 10. The photon index of the power-law component, which is dominant during the entire outburst, decreases from ∼1.76 to 1.6. However, towards the end of the observations the photon index is found to increase, indicating a softening of the spectra. The presence of an ultrasoft thermal component, during the bright phases of the burst, is clear from the fits to the data. The temperature associated with this thermal component is 0.4 keV. We believe that this thermal component could be due to the presence of an accretion disc. Assuming a distance of 8.5 kpc,   L X/ L Edd≃ 0.05  at the peak of the burst, for a black hole of mass  10 M  . The source is found to be locked in the low/hard state during the entire outburst and likely falls in the category of the X-ray transients that are observed in the low/hard state throughout the outburst. We discuss the physical scenario of the low/hard state outburst for this source.  相似文献   

16.
Wide field monitoring is of particular interest in X-ray astronomy due to the strong time-variability of most X-ray sources. Not only does the time-profiles of the persistent sources contain characteristic signatures of the underlying physical systems, but, additionally, some of the most intriguing sources have long periods of quiesense in which they are almost undetectable as X-ray sources, interspersed with relatively brief periods of intense outbursts, where we have unique opportunities of studying dynamical effects, in, for instance, the evolution of accretion discs. Another question for which wide field monitors may provide key information, is the origin and nature of the cosmic gamma ray bursts.Rotation Modulation Collimators (RMC's) were originally introduced in X-ray astronomy to provide accurate source localizations over extended fields. This role has since been taken over by the grazing incidence telescope systems. The potential of the RMC's as wide field monitors have recently been demonstrated by the WATCH instruments on GRANAT and EURECA. It now appears likely, that for use on large, 3-axis stabilized spacecraft, a pinhole camera system may provide better sensitivity than an RMC-system of corresponding physical dimensions. But due to its simplicity, low data rate, and ability to work on spin stabilized (micro)satellites, the RMC wide field monitor may still have a role to play in the X-ray astronomy of the future.  相似文献   

17.
The behaviour of the accelerated electrons escaping from a high-temperature source of primary energy in a solar flare is investigated. The direct current of fast electrons is supposed to be balanced by the reverse current of thermal electrons in the ambient colder plasma inside flare loops. The self-consistent kinetic problem is formulated; and the reverse-current electric field and the fast electron distribution function are found from its solution. The X-ray bremsstrahlung polarization is then calculated from the distribution function. The difference of results from those in the case of thermal runaway electrons (Diakonov and Somov, 1988) is discussed. The solutions with and without account of the affect of a reverse-current electric field are also compared.  相似文献   

18.
Asymmetric magnetic field configurations in solar active regions hinder mildly relativistic electrons with magnetic moments suitable to produce microwave radiation from being trapped. Therefore the duration of stay of electrons in the microwave source region is much shorter (<0.2 s) than in the usually assumed trapping models. On this basis we construct a consistent model of hard X-ray correlated microwave bursts due to continuous injection of electrons into a pole field of an asymmetric magnetic loop (Figures 1 and 2). This resolves the discrepancy of the numbers of electrons needed to produce X-ray and radio emission.We compute gyrosynchrotron spectra with the assumption of conservation of the magnetic moment M in the microwave source. The consequence is an anticorrelation between the low frequency power index a of the microwave spectrum and the power index of the hard X-ray spectrum. In fact during the flare of May 18, 1972 increases with time while a is decreasing, so that +a= constant. Furthermore, it is shown that electrons with energies below 100 keV contribute significantly to the microwave radiation; they determine the low frequency spectrum completely.The model is able to explain the most often observed type C-spectra (Guidice and Castelli, 1975), but also flat spectra over one frequency decade.On leave from University of Berne, Institute of Applied Physics.  相似文献   

19.
Near solar maximum, hard X-ray microflares with peak 20 keV fluxes of 10–2 (cm2 s keV)–1, more than ten times smaller than for typical flares and subflares, can occur at the rate of about once every five minutes. We report here on a search for hard X-ray microflares made on a long duration balloon flight in February 1987 near solar minimum, at a time when no active regions were on the Sun. No microflares were observed over a total observing time of 16.5 hours spread over three days, implying a statistical upper limit to their rate of occurrence about a factor often lower than observed near solar maximum. Thus hard X-ray microflaring appears to be an active region phenomenon, and apparently not associated with flaring of soft X-ray bright points.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号