首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The type, strength, and spatial distributions of hydrocarbon alteration of the surface soil are studied in two sections in East Sichuan area through the simultaneous analysis of soil organic geochemistry, soil mineralogy, and soil chemistry. The spectral response and remote-sensing mechanism are studied through the soil spectral analysis in the range of VIS--NIR bands. The results of this study demonstrate that long-time hydrocarbon microseepage can induce mineral and chemical alteration of surface soil, including the increase of clay-mineral content and carbonate-mineral content, the increase of ferrous-iron content, and decrease of ferric-iron content. Soil mineral components related to hydrocarbon alteration have spatial coincidence with soil organic geochemical components. Increase of clay- and carbonate-mineral contents in the soil can cause decrease of reflectance in VIS–NIR bands and increase of Landsat band ratio TM5/TM7. Increase of ferrous-iron content and decrease of ferric-iron content in the soil may cause increase of reflectance in the range of 400 nm to 600 nm, and higher reflectance of Landsat band ratios of TM1/TM3 and TM2/TM3.  相似文献   

2.
We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85–0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.  相似文献   

3.
Stratigraphic forward modelling was used to simulate the deposition of Upper Cretaceous, Eocene and Oligo‐Miocene source rocks in the Eastern Mediterranean Sea and, thus, obtain a process‐based 3D prediction of the quantity and quality distribution of organic matter (OM) in the respective intervals. Upper Cretaceous and Eocene models support the idea of an upwelling‐related source rock formation along the Levant Margin and the Eratosthenes Seamount (ESM). Along the margin, source rock facies form a narrow band of 50 km parallel to the palaeo shelf break, with high total organic carbon (TOC) contents of about 1% to 11%, and HI values of 300–500 mg HC/g TOC. On top of the ESM, TOC contents are mainly between 0.5% and 3% and HI values between 150 and 250 mg HC/g TOC. At both locations, TOC and HI values decrease rapidly towards the deeper parts of the basin. In the Oligo‐Miocene intervals, terrestrial OM makes up the highest contribution to the TOC content, as marine organic matter (OM) is diluted by high‐sedimentation rates. In general, TOC contents are low (<1%), but are distributed relatively homogenously throughout the whole basin, creating poor quality, but very thick source rock intervals of 1–2 km of cumulative thickness. The incorporation of these source rock models into a classic petroleum system model could identify several zones of thermal maturation in the respective source rock intervals. Upper Cretaceous source rocks started petroleum generation in the late Palaeocene/early Eocene with peak generation between 20 and 15 Ma ca. 50 km offshore northern Lebanon. Southeast of the ESM, generation started in the early Eocene with peak generation between 18 and 15 Ma. Eocene source rocks started HC generation ca. 25 Ma ago between 50 and 100 km southeast of the ESM and reached the oil to wet gas window at present day. However, until today they have converted less than 20% of their initial kerogen. Although the Miocene source rocks are mostly immature, Oligocene source rocks lie within the oil window in the southern Levant Basin and reached the onset of the wet gas window in the northern Levant Basin. However, only 10%–20% of their initial kerogen have been transformed to date.  相似文献   

4.
A combination of carbon-to-nitrogen ratios (TOC/TN), Rock Eval-analyses, and stable isotope values of bulk nitrogen (δ15N) and organic carbon (δ13Corg) was used to characterize bulk organic matter (OM) of a piston core from the Patagonian maar lake Laguna Potrok Aike (Argentina) for the purpose of palaeoenvironmental reconstruction. Sedimentary data were compared with geochemical signatures of potential OM sources from Laguna Potrok Aike and its catchment area to identify the sources of sedimentary OM. Correlation patterns between isotopic data and TOC/TN ratios allowed differentiation of five distinct phases with different OM composition. Before 8470 calibrated 14C years before present (cal. yrs BP) and after 7400 cal. yrs BP, isotopic and organo-geochemical fingerprints indicate that the sediments of Laguna Potrok Aike consist predominantly of soil and diatom OM with varying admixtures of cyanobacterial and aquatic macrophyte OM. For a short phase of the early Holocene (ca. 8470–7400 cal. yrs BP), however, extremely high input of soil OM is implied by isotopic fingerprints. Previous seismic and geochronological results indicate a severe lake-level drop of 33 m below present-day shortly before 6590 cal. yrs BP. It is suggested that this lake level drop was accompanied by increased erosion of shore banks and channel incision enhancing soil OM deposition in the lake basin. Thus, isotopic data can be linked to hydrological variations at Laguna Potrok Aike and allow a more precise dating of this extremely low lake level. An isotopic mixing model was used including four different sources (soil, cyanobacteria, diatom and aquatic macrophyte OM) to model OM variations and the model results were compared with quantitative microfossil data.  相似文献   

5.
Fine‐grained Palaeogene–early Neogene strata of the South Caspian basin, specifically the Oligocene–Lower Miocene Maikop Series, are responsible for the bulk of hydrocarbon generation in the region. Despite the magnitude of oil and gas currently attributed to the source interval offshore, geochemical evaluation of 376 outcrop samples from the northern edge of the Kura basin (onshore eastern Azerbaijan) indicates that depositional conditions in these proximal strata along the basin margins were dominantly oxic to mildly suboxic/anoxic throughout three major depositional stages: the Palaeocene–Eocene, Oligocene–early Middle Miocene and late Middle–Late Miocene. Palaeocene–Eocene samples have low average total organic carbon (TOC) values (0.3%), with higher total inorganic carbon (TIC) values (average=2.6%), extremely low sulphur content (0.2%) and relatively high detrital input as indicated by Fe/Al and Ti/Al ratios. C–S–Fe associations, along with relatively lower concentrations of redox‐sensitive trace elements (e.g. V, Ni, Mo, U) indicate dominantly oxic environments of deposition during much of the Palaeocene–Eocene. A pronounced geochemical shift occurred near the Eocene–Oligocene boundary, and continued through the Early Miocene. Specifically, this interval is characterized by a distinct increase in TOC (ranging from 0.1 to 6.3% with an average of 1.5%), C–S–Fe associations that reveal an abrupt relative increase of carbon and sulphur with respect to iron‐dominated Palaeocene–Eocene samples, and higher concentrations of redox‐sensitive trace metals. These changes suggest that a shift away from unrestricted marine conditions and towards more variable salinity conditions occurred coincident with the initial collision of the Arabian plate and partial closure of the Paratethys ocean. Despite periodic basin restriction, the majority of Upper Eocene–Lower Miocene strata in the northern Kura basin record oxic to slightly dysoxic conditions.  相似文献   

6.
探讨晚冰期以来猪野泽沉积物中的总有机碳(TOC)、碳氮比(C/N)、有机碳同位素(δ13C)3种有机地球化学指标与花粉组合之间的相互关系。结果表明,猪野泽沉积物中有机地球化学指标和孢粉组合对环境变化的响应程度不同,3种有机地球化学指标对环境变化的整体趋势反应敏感,孢粉组合适于对细节变化的分析。猪野泽沉积物整个剖面中(除~13.0 cal ka BP之前的底部砂层沉积段外)TOC和C/N较低值,δ13C较高值,对应总花粉浓度较低时期;TOC和C/N较高值,δ13C较低值,对应总花粉浓度较高时期。  相似文献   

7.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

8.
In arid and semi-arid areas biological soil crusts are main contributors to C and N-cycles and the origin of organic matter. Nevertheless systematic studies on the spatial distribution of total organic carbon (TOC) and nitrogen (N) and a characterization of crust organic matter composition are missing. To describe the spatial distribution of TOC and N we examined three soil depths and three relief positions along a steep rainfall gradient. In addition the molecular composition of organic matter was characterized by Pyrolysis-field ionization mass spectrometry.TOC and N concentrations decreased with increasing depth, the effects of the relief followed no clear trend. Surprisingly the amount of TOC and N decreased with increasing rainfall. Stable organic matter compounds were reduced with increasing rainfall. Topcrusts (0–2 mm) showed a relative enrichment in bacteria, as indicated by proportionally larger contents in N-acetylmuramic acid (m/z 167 + 276) than the subcrusts (2–40 mm). These were enrichment in cyanobacteria, as indicated by proportionally larger contents of hexadecadienoic acid (m/z 252).We conclude that the spatial distribution of TOC and N is related to sampling depth and annual precipitation. Organic matter composition and the main biomass contributors in crusts are successfully identified by pyrolysis-field ionization mass spectrometry.  相似文献   

9.
天津地区典型土壤剖面饱和烃分布特征及环境意义   总被引:2,自引:0,他引:2  
分析了天津地区不同环境功能区7 条土壤剖面中饱和烃含量、组成及部分地球化学参数 的变化规律, 比较了不同土壤剖面饱和烃在纵向上的变化特征。结果表明, 市区( 南开区) 及近郊 区( 武清区, 北辰区和宁河县交界处) 表层土饱和烃含量最高, 其他剖面含量较低; 随深度增大, 饱 和烃含量均有所降低, 但不同剖面变化幅度不同, 表层含量较高的剖面随深度增大, 饱和烃含量 降低幅度较大, 反之则较小。根据部分典型地球化学参数的纵向变化特征, 推测表层土壤饱和烃 主要为石油源和植物源的混合源, 且市区和郊区主要受石油源控制。不同土壤剖面表层土污染源 存在差别。同一剖面表层土壤( <30cm) 不同层次的样品的饱和烃污染源较为接近; 剖面深部( > 30cm) 不同层次样品中正构烷烃不同于表层, 且成因复杂, 既受来源于土壤中有机质降解产物的 影响, 又受表层土中饱和烃纵向迁移作用的影响。对于甾、萜类化合物, 表层土壤中饱和烃含量较 高的剖面, 深层土壤受表层土壤甾、萜类污染物迁移作用的影响; 表层土壤中饱和烃含量较低的 剖面, 深层土壤受表层土壤甾、萜类污染物影响较小。  相似文献   

10.
Transport of organic carbon via rivers to estuary is a significant geochemical proc- ess in the global carbon cycle. This paper presents bulk total organic carbon (TOC) from the Dongjiang catchment to the adjacent Humen outlet, and discusses the applicability of 613C and ratio of carbon to nitrogen (C/N) as indicators for sources of organic matter in the surface sediments. Survey results showed that organic carbon concentration in summer were higher than in the winter. An elevated trend of TOC occurred along the river to the Humen outlet in both surveys, and the highest mean values of dissolved and particular organic carbon (DOC-279 μmol L-1 and POC-163μmol L-1) were observed in the urban deltaic region in summer flood flow. Winter samples had a wide range of b'13C and C/N (5-3C -24.6%o to -30.0%o, C/N 4-13), and summer ones varied slightly (8-3C -24.2%o to -27.6%0, C/N 6-18). As results suggest that POC in the three zones of upstream-delta-outlet dominantly came from riverbank soil, phytoplankton and agricultural C3 plants in winter, whereas main sources were from the riverbank and mangrove soil in summer. Moreover, anthropogenic sewage inputs had 11% and 7% contribution to POC in the deltaic and outlet. Transport accompanied with seasonal freshwater variation, phytoplankton production and degradation, and removal be- havior caused variation of organic carbon concentration. The results also discovered that TOC export bulk in Dongjiang was approximately one quarter of Humen flux in the dry flow, and anthropogenic activity significantly impacted the river export contribution.  相似文献   

11.
The distribution of organic carbon and its relationship to vegetation development were examined on a glacier foreland near Ny-Ålesund, Svalbard (79°N). In a 0.72-km2 area, we established 43 study plots on three line transects along primary succession from recently deglaciated area to old well-vegetated area. At each plot, we measured the type and percent coverage of vegetation types. The organic carbon content of vegetation, organic soil, and mineral soil samples was determined based on their organic carbon concentration and bulk density. Cluster analysis based on vegetation coverage revealed five types of ground surfaces representing variations in the amounts and allocation patterns of organic carbon. In the later stages of succession, 7%–24% and 31%–40% of organic carbon was contained in the organic and deeper soil layers, respectively. Organic carbon storage in the later stages of succession ranged from 1.1 – 7.9 kg C m−2. A larger amount of organic carbon, including ancient carbon in a raised beach deposit, was expected to be contained in much deeper soil layers. These results suggest that both vegetation development and geological history affect ecosystem carbon storage and that a non-negligible amount of organic carbon is distributed in this High Arctic glacier foreland.  相似文献   

12.
The composition of organic matter in a 34,000 yr sediment profile from Lago di Mezzano, central Italy, was investigated by bulk organic geochemical methods and analyses of lipid distributions. High relative amounts of long-chain fatty acids, n-alkanols and n-alkanes from the cuticular waxes of terrestrial plants in the Late Pleistocene sediments indicate a high relative proportion of allochthonous organic matter. In the Holocene sediments higher relative amounts of algal and bacterial lipids are detected which indicate a higher relative contribution of autochthonous organic matter. These results are corroborated by Hydrogen Index (HI) and Oxygen Index (OI) values from Rock-Eval pyrolysis which show a good general correlation with the TOC content indicating significant variations of the organic matter composition. Variations of HI and OI observed for different lithozones of the sediment profile can be related to environmental and climatic changes throughout the lake history. Both bulk organic geochemical and molecular data point to a good overall preservation of the organic matter.  相似文献   

13.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

14.
A decade of widespread increases in surface water concentrations of total organic carbon (TOC) in some regions has raised questions about longer term patterns in this important constituent of water chemistry. This study uses near-infrared spectroscopy (NIRS) to infer lake water TOC far beyond the decade or two of observational data generally available. An expanded calibration dataset of 140 lakes across Sweden covering a TOC gradient from 0.7 to 24.7 mg L−1 was used to establish a relationship between the NIRS signal from surface sediments (0–0.5 cm) and the TOC concentration of the water mass. Internal cross-validation of the model resulted in an R 2 of 0.72 with a root mean squared error of calibration (RMSECV) of 2.6 mg L−1. The TOC concentrations reconstructed from surface sediments in four Swedish lakes were typically within the range of concentrations observed in the monitoring data during the period represented by each sediment layer. TOC reconstructions from the full sediment cores of four lakes indicated that TOC concentrations were approximately twice as high a century ago.  相似文献   

15.
Seismic reflection data image now-buried and inactive volcanoes, both onshore and along the submarine portions of continental margins. However, the impact that these volcanoes have on later, post-eruption fluid flow events (e.g., hydrocarbon migration and accumulation) is poorly understood. Determining how buried volcanoes and their underlying plumbing systems influence subsurface fluid or gas flow, or form traps for hydrocarbon accumulations, is critical to de-risk hydrocarbon exploration and production. Here, we focus on evaluating how buried volcanoes affect the bulk permeability of hydrocarbon seals, and channel and focus hydrocarbons. We use high-resolution 3D seismic reflection and borehole data from the northern South China Sea to show how ca. <10 km wide, ca. <590 m high Miocene volcanoes, buried several kilometres (ca. 1.9 km) below the seabed and fed by a sub-volcanic plumbing system that exploited rift-related faults: (i) acted as long-lived migration pathways, and perhaps reservoirs, for hydrocarbons generated from even more deeply buried (ca. 8–10 km) source rocks; and (ii) instigated differential compaction and doming of the overburden during subsequent burial, producing extensional faults that breached regional seal rocks. Considering that volcanism and related deformation are both common on many magma-rich passive margins, the interplay between the magmatic products and hydrocarbon migration documented here may be more common than currently thought. Our results demonstrate that now-buried and inactive volcanoes can locally degrade hydrocarbon reservoir seals and control the migration of hydrocarbon-rich fluids and gas. These fluids and gases can migrate into and be stored in shallower reservoirs, where they may then represent geohazards to drilling and impact slope stability.  相似文献   

16.
开垦对内蒙古温带草地土壤不同有机碳组分的影响(英文)   总被引:3,自引:2,他引:1  
Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0-30 cm decreased more significantly (p<0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0-40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S.baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%-0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%-1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05.  相似文献   

17.
The Beetaloo Sub-basin, northern Australia, is considered the main depocentre of the 1,000-km scale Mesoproterozoic Wilton package of the greater McArthur Basin – the host to one of the oldest hydrocarbon global resources. The ca. 1.40–1.31 Ga upper Roper Group and the latest Mesoproterozoic to early Neoproterozoic unnamed group of the Beetaloo Sub-basin, together, record ca. 500 million years of depositional history within the North Australia Craton. Whole-rock shale Sm–Nd and Pb isotope data from these sediments reveal sedimentary provenance and their evolution from ca. 1.35 to 0.85 Ga. Furthermore, these data, together with shale major/trace elements data from this study and pyrolysis data from previous publications, are used to develop a dynamic tectonic geography model that links the organic carbon production and burial to an enhanced weathering of nutrients from a large igneous province. The ca. 1.35–1.31 Ga Kyalla Formation of the upper Roper Group is composed of isotopically evolved sedimentary detritus that passes up, into more isotopically juvenile Pb values towards the top of the formation. The increase in juvenile compositions coincides with elevated total organic carbon (TOC) contents of these sediments. The coherently enriched juvenile compositions and TOC the upper portions of the Kyalla Formation are interpreted to reflect an increase in nutrient supply associated with the weathering of basaltic sources (e.g. phosphorous). Possible, relatively juvenile, basaltic sources include the Wankanki Supersuite in the western Musgraves and the Derim Derim–Galiwinku large igneous province (LIP). The transition into juvenile, basaltic sources directly before a supersequence-bounding unconformity is here interpreted to reflect uplift and erosion of the Derim Derim–Galiwinku LIP, rather than an influx of southern Musgrave sources. A new baddeleyite crystallisation age of 1,312.9 ± 0.7 Ma provides both a tight constraint on the age of this LIP, along with its associated magmatic uplift, as well as providing a minimum age constraint for Roper Group deposition. The unconformably overlying lower and upper Jamison sandstones are at least 300 million years younger than the Kyalla Formation and were sourced from the Musgrave Province. An up-section increase in isotopically juvenile compositions seen in these rocks is interpreted to document the progressive exhumation of the western Musgrave Province. The overlying Hayfield mudstone received detritus from both the Musgrave and Arunta regions, and its isotopic geochemistry reveals affinities with other early Neoproterozoic basins (e.g. Amadeus, Victoria and Officer basins), indicating the potential for inter-basin correlations.  相似文献   

18.
Mesozoic sediments are source rocks for nearly half the world’s hydrocarbon reserves. Hence, there is great interest in the oil industry to know the trap and sub-trappean sediment thickness and their extent in the trap covered regions of Jamnagar study area. The microbial prospecting method is applied in the Jamnagar sub-basin, Gujarat for evaluating the prospects for hydrocarbon exploration by investigating the anomalous abundance of n-pentane- and n-hexane-oxidizing bacteria of this area. A total of 150 near-surface soil samples were collected in Jamnagar sub-basin, Gujarat for the evaluation of hydrocarbon resource potential of the basin. In this study, bacterial counts for n-pentane-utilizing bacteria range between 1.09 × 102 and 9.89 × 105 cfu/g and n-hexane-utilizing bacteria range between 1.09 × 102 and 9.29 × 105 cfu/g. The adsorbed hydrocarbon gases consisting of ethane plus hydrocarbons (ΣC2+) of 1–977 ppb and n-pentane (nC5) of 1–23 ppb. The integrated geomicrobial and adsorbed soil gas studies showed the anomalous hydrocarbon zones nearby Khandera, Haripur, and Laloi areas which could probably aid to assess the true potential of the basin. Integrated geophysical studies have shown that Jamnagar sub-basin of Saurashtra has significant sediment thickness below the Deccan Traps and can be considered for future hydrocarbon exploration.  相似文献   

19.
湖泊沉积物有机地化指标在古气候解释中具有复杂性和多解性。TOC、C/N和δ^13Corg作为3种常用的有机地化指标,现已广泛运用于东、中亚全新世气候变化研究中。以这3种指标为例综述了东、中亚全新世湖泊沉积有机地化指标的变化机制及影响因素。根据数据的综合分析与对比,大部分湖泊全新世沉积物TOC百分含量较高时,C/N比值也较高。这与沉积物有机质的来源有关,因两者TOC和C/N作用机制不同,也存在少数湖泊,其两者对应关系不明显;同一湖泊δ^13Corg与TOC及δ^13Corg与C/N对应关系相似;由于不同区域影响有机地化指标的因素不同,TOC、C/N和δ1^3Corg间的关系存在区域差异,据此可将研究区分为中纬度地区、青藏高原区和低纬度季风区。上述区域规律存在于研究中所选的大部分湖泊,由于有机地化指标作用机理的复杂性,也存在不符合这种规律的湖泊,因而上述结论有待于进一步讨论。  相似文献   

20.

The Chang-7 shale of the Upper Triassic Yanchang Formation was deposited in a deep-lacustrine environment in the southwest part of the Ordos Basin. It is characterized by a strong lithological heterogeneity, consisting primarily of pure shale and sandy laminated shale. This study explored the impact of sandy laminae in the thick pure shale on hydrocarbon generation, retention, and expulsion, which were rarely considered in previous studies. Based on core observation, thin section, and geochemical analysis, the hydrocarbon generation, retention, and expulsion characteristics were obtained for both pure shale and sandy laminated shale. In general, the Chang-7 shale stays at low mature to mature thermal evolution stage and has good hydrocarbon generation potential. It contains mainly Type II kerogen with an average total organic carbon (TOC) of 2.9% and average (S1?+?S2) of 8.2 mg/g. Compared with sandy laminated shale, pure shale contains more retained liquid hydrocarbon and has a higher amount of asphaltene and nitrogen–sulfur–oxygen (NSO) polarized components, indicating a relatively weak hydrocarbon expulsion process. The middle part of a thick pure shale retains more liquid hydrocarbon and has higher percentages of asphaltene and NSO polarized components than that of the top and basal part of the shale where sandy laminae occur. The difference in hydrocarbon retention capacity is interpreted to have been primarily caused by the comparatively higher reservoir quality of the sandy laminated shale, having higher amount of brittle minerals and larger pores than the pure shale. Polymer dissolution and nanopore adsorption are also key factors in hydrocarbon retention and component partition. Based on this study, we suggest that sandy laminated shale, which receives most of the hydrocarbon from adjacent pure shale, should be the current favorable shale oil exploration targets. Even though pure shale contains high hydrocarbon potential, its development is still pending improved technologies, which could solve the challenges caused by complicated geological conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号