首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
Ground-Water Remediation Using "Smart Pump and Treat"   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
A wide range of rules, algorithms, and models are available to design an effective pump and treat remediation system. Often, one refers to the effectiveness of the developed pump and treat system to demonstrate how valuable the use of a groundwater model can be. An economic valuation of the groundwater model is usually missing. This study provides a framework that puts the discussion concerning the use of groundwater models in an economic perspective. It is not only demonstrated that a more effective pump and treat system can be designed using a groundwater model, but also the economic implications of using a groundwater model are calculated. A set of economic decision rules is applied to determine the economic value of a groundwater model. It is shown that investing in a groundwater model can be economically worthwhile. The remediation time is reduced, remediation costs are saved and the property can be sold more early. These benefits outweigh the costs of developing a groundwater model, and hence a positive net benefit (NB) is determined.  相似文献   

6.
In Situ Biorestoration as a Ground Water Remediation Technique   总被引:1,自引:0,他引:1  
In situ biorestoration, where applicable, is indicated as a potentially very cost-effective and environmentally acceptable remediation technology. Many contaminants in solution in ground water as well as vapors in the unsaturated zone can be completely degraded or transformed into new compounds by naturally occurring indigenous microbial populations. Undoubtedly, thousands of contamination events are remediated naturally before the contamination reaches a point of detection. The need is for methodology to determine when natural biorestoration is occurring, the stage the restoration process is in, whether enhancement of the process is possible or desirable, and what will happen if natural processes are allowed to run their course.
In addition to the nature of the contaminant, several environmental factors are known to influence the capacity of indigenous microbial populations to degrade contaminants. These factors include dissolved oxygen, pH, temperature, oxidation-reduction potential, availability of mineral nutrients, salinity, soil moisture, the concentration of specific pollutants, and the nutritional quality of dissolved organic carbon in the ground water.
Most enhanced in situ bioreclamation techniques available today are variations of hydrocarbon degradation procedures pioneered and patented by Raymond and coworkers at Suntech during the period 1974 to 1978. Nutrients and oxygen are introduced through injection wells and circulated through the contaminated zone by pumping one or more producing wells.
The limiting factor in remediation technology is getting the contaminated subsurface material to the treatment unit or units, or in the case of in situ processes, getting the treatment process to the contaminated material. The key to successful remediation is a thorough understanding of the hydrogeologic and geochemical characteristics of the contaminated area.  相似文献   

7.
The design of a pump and treat (P&T) system for the hydraulic control of a contaminated plume in a confined aquifer is presented here. Being the system designed for the emergency containment of a nonaqueous phase liquid plume, the evaluation of the system’s short-term efficiency was considered an important issue. For this reason, both time-related and ultimate capture zones were defined. They were traced using the automatic protection area (APA) model, a capture-zone delineation tool based on a hybrid forward-backward particle tracking algorithm, that provides an automatic post-processing encirclement of capture zones. Two simple indexes are here proposed for the evaluation of the performance of the hydraulic barrier, that is, the efficacy and efficiency indexes, calculated from the capture areas provided by APA. The discharge rates of the wells were dimensioned applying the APA algorithm, maximizing efficacy and efficiency of the barrier. Results proved both visually (via plotting of capture zones) and numerically (via calculation of the indexes) that the P&T system can provide a complete capture of the contaminated area and minimizes the volume of extracted water. Consequently, the APA algorithm was proved to be a useful tool in capture zone delineation. As a future perspective, it could be coupled with the real-time measurement of pumping rates and water levels and be implemented as a part of a tuning tool for the management of the hydraulic barrier.  相似文献   

8.
9.
10.
11.
12.
13.
A simple, inexpensive sampling pump has lately come into use in ground water monitoring. The pump is referred to as an inertial pump; its only downhole components are a foot valve connected to a length of tubing or pipe. The operating principle of the pump is based on the inertia of a column of water within the riser tubing. Ground water is drawn through the foot valve and up the riser tubing by rapid up and down movements of the tubing. This pumping method is not new, but has only recently been applied to monitoring wells. Foot valves are available in a variety of materials and sizes and can be used in monitoring wells as small as 19mm (3/4 inch) I.D. Flexible polyethylene or Teflon® tubing, and in some cases stainless steel tubing or rigid PVC pipe, is used as the riser. The inertial pump satisfies most of the criteria normally cited for an "ideal" sampling device. The pump is easy to operate, reliable, durable, portable, and virtually maintenance-free. It can be operated manually from as deep as 40m or from as deep as 60m using a motor drive. The pump is inexpensive, and therefore suitable for use as a dedicated sampling pump. Recent tests have shown the pump to be suitable for sampling volatile organics. The inertial pump has a high flow capacity and performs well in silty/sandy environments, which makes it useful for developing and purging monitoring wells. It may also be used to perform field hydraulic conductivity tests.  相似文献   

14.
Economics of Improving Well and Pump Efficiency   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
17.
A crude‐oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual‐pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved‐oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil‐phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.  相似文献   

18.
Permeable reactive barriers (PRBs), such as mulch biowalls, have been installed at numerous groundwater cleanup sites, and laboratory and field studies have demonstrated biotic and abiotic processes that degrade chlorinated volatile organic compounds (CVOCs) in groundwater passing through these engineered remedies. However, the longevity of mulch biowalls remains a fundamental research question. Soil and groundwater sampling at seven mulch biowalls at Altus Air Force Base (AFB) approximately 10 years after installation demonstrated the ongoing degradation of CVOCs. Trichloroethene was not detected in five of seven groundwater samples collected from the biowall despite upgradient detections above federal drinking water standards. Microbial sampling established the presence of key dechlorinating bacteria and the abundance of genes encoding specific enzymes for degradation, high methane concentrations, low sulfate concentrations, and negative oxidation-reduction potential, all indicative of highly reducing conditions within the biowalls and favorable conditions for CVOC destruction via microbial reductive dechlorination. High cellulose content (>79%) of the mulch, elevated total organic carbon (TOC) content in groundwater, and elevated potentially bioavailable organic carbon (PBOC) measurements in soil samples further supports an ongoing, long-lived source of carbon. These results demonstrate the ongoing and long-term efficacy of the mulch biowalls at Altus AFB. In addition, concentrations of bacteria, TOC, PBOC, and other geochemical parameters suggest a modest impact of the biowalls downgradient. The continued presence of CVOCs downgradient may be attributable to back diffusion from low-permeability shale. However, the biowalls continue to provide benefits by removing CVOCs in groundwater, thus reducing further CVOC loading to the downgradient, low-permeability strata.  相似文献   

19.
The collection of water samples from springs, streams, and wells is a critical component of field hydrogeological studies. Fieldwork, especially in mountainous terrain, often involves hiking to remote springs and streams. It is logistically and physically difficult to carry bulky, heavy sampling equipment such as large peristaltic pumps with built‐in batteries in these areas. To address this problem, researchers at the University of Montana designed the Montana Drill Pump (MDP) roughly 30 years ago to provide a compact, low‐cost and portable option for sampling with a peristaltic pump in the backcountry (Woessner 2007 ). Although the MDP is popular, with the advent of 3D printing techniques, a more robust and precise fitting pump design can be inexpensively created that can be quickly assembled in the lab or field. This new pump design was tested on multiple backpacking sampling campaigns in the Panamint Mountains of southern California, Mount Hood in Oregon, and Glacier National Park in northern Montana during the summer of 2017. The design was proven to be easy to use and durable in the field and offers a rugged, updated, more precisely fitting option to the MDP.  相似文献   

20.
Pump‐and‐treat (P&T) is a widely applied remedy for groundwater remediation at many types of sites for multiple types of contaminants. Decisions regarding major changes in the remediation approach are an important element of environmental remediation management for a site using P&T. While existing guidance documents provide information on design, operation, and optimization for P&T systems, these documents do not provide specific technical guidance to support remedy decisions regarding when to transition to a new remedy or to initiate closure of the P&T remedy. A structured approach for P&T performance assessment was developed and is described herein, using analysis of three example P&T systems. These examples highlight key aspects of the performance assessment decision logic and represent assessment outcomes associated with optimizing the P&T system, transitioning from P&T to natural attenuation, and supplementing P&T with another technology to hasten transition to natural attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号