首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic approach to generate periodic orbits in the elliptic restricted problem of three bodies in introduced. The approach is based on (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to periodic orbits in the elliptic restricted problem. Two families of periodic orbits of the elliptic restricted problem are found by this approach. The mass ratio of the primaries of these orbits is equal to that of the Sun-Jupiter system. The sidereal mean motions between the infinitesimal body and the smaller primary are in a 2:5 resonance, so as to approximate the Sun-Jupiter-Saturn system. The linear stability of these periodic orbits are studied as functions of the eccentricities of the primaries and of the infinitesimal body. The results show that both stable and unstable periodic orbits exist in the elliptic restricted problem that are close to the actual Sun-Jupiter-Saturn system. However, the periodic orbit closest to the actual Sun-Jupiter-Saturn system is (linearly) stable.  相似文献   

2.
The resonant structure of the restricted three body problem for the Sun- Jupiter asteroid system in the plane is studied, both for a circular and an elliptic orbit of Jupiter. Three typical resonances are studied, the 2 : 1, 3 : 1 and 4 : 1 mean motion resonance of the asteroid with Jupiter. The structure of the phase space is topologically different in these cases. These are typical for all other resonances in the asteroid problem. In each case we start with the unperturbed two-body system Sun-asteroid and we study the continuation of the periodic orbits when the perturbation due to a circular orbit of Jupiter is introduced. Families of periodic orbits of the first and of the second kind are presented. The structure of the phase space on a surface of section is also given. Next, we study the families of periodic orbits of the asteroid in the elliptic restricted problem with the eccentricity of Jupiter as a parameter. These orbits bifurcate from the families of the circular problem. Finally, we compare the above families of periodic orbits with the corresponding families of fixed points of the averaged problem. Different averaged Hamiltonians are considered in each resonance and the range of validity of each model is discussed.  相似文献   

3.
We show that the procedure employed in the circular restricted problem, of tracing families of three-dimensional periodic orbits from vertical self-resonant orbits belonging to plane families, can also be applied in the elliptic problem. A method of determining series of vertical bifurcation orbits in the planar elliptic restricted problem is described, and one such series consisting of vertical-critical orbits (a v=+1) is given for the entire range (0,1/2) of the mass parameter . The initial segments of the families of three-dimensional orbits which bifurcate from two of the orbits belonging to this series are also given.  相似文献   

4.
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.  相似文献   

5.
This paper shows that there exist two families of periodic solutions of the restrictedN-body problem which are close to large circular orbits of the Kepler problem. These solutions are shown to be of general elliptic type and hence are stable. If the restricted problem admits a symmetry, then there are symmetric periodic solutions which are close to large elliptic orbits of the Kepler problem.  相似文献   

6.
The 2/1 resonant dynamics of a two-planet planar system is studied within the framework of the three-body problem by computing families of periodic orbits and their linear stability. The continuation of resonant periodic orbits from the restricted to the general problem is studied in a systematic way. Starting from the Keplerian unperturbed system, we obtain the resonant families of the circular restricted problem. Then, we find all the families of the resonant elliptic restricted three-body problem, which bifurcate from the circular model. All these families are continued to the general three-body problem, and in this way we can obtain a global picture of all the families of periodic orbits of a two-planet resonant system. The parametric continuation, within the framework of the general problem, takes place by varying the planetary mass ratio ρ. We obtain bifurcations which are caused either due to collisions of the families in the space of initial conditions or due to the vanishing of bifurcation points. Our study refers to the whole range of planetary mass ratio values  [ρ∈ (0, ∞)]  and, therefore we include the passage from external to internal resonances. Thus, we can obtain all possible stable configurations in a systematic way. As an application, we consider the dynamics of four known planetary systems at the 2/1 resonance and we examine if they are associated with a stable periodic orbit.  相似文献   

7.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

8.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

9.
Applying the method of analytical continuation of periodic orbits, we study quasi-satellite motion in the framework of the three-body problem. In the simplest, yet not trivial model, namely the planar circular restricted problem, it is known that quasi-satellite motion is associated with a family of periodic solutions, called family f, which consists of 1:1 resonant retrograde orbits. In our study, we determine the critical orbits of family f that are continued both in the elliptic and in the spatial models and compute the corresponding families that are generated and consist the backbone of the quasi-satellite regime in the restricted model. Then, we show the continuation of these families in the general three-body problem, we verify and explain previous computations and show the existence of a new family of spatial orbits. The linear stability of periodic orbits is also studied. Stable periodic orbits unravel regimes of regular motion in phase space where 1:1 resonant angles librate. Such regimes, which exist even for high eccentricities and inclinations, may consist dynamical regions where long-lived asteroids or co-orbital exoplanets can be found.  相似文献   

10.
The present research was motivated by the recent discovery of planets around binary stars. Our initial intention was thus to investigate the 3-dimensional nearly circular periodic orbits of the circular restricted problem of three bodies; more precisely Stromgren's class L, (direct) and class m, (retrograde). We started by extending several of Hénon's vertical critical orbits of these 2 classes to three dimensions, looking especially for orbits which are near circular and have stable characteristic exponents.We discovered early on that the periodic orbits with the above two qualifications are fairly rare and we decided thus to undertake a systematic exploration, limiting ourselves to symmetric periodic orbits. However, we examined all 16 possible symmetry cases, trying 10000 sets of initial values for periodicity in each case, thus 160000 integrations, all with z o or o equal to 0.1 This gave us a preliminary collection of 171 periodic orbits, all fairly near the xy-plane, thus with rather low inclinations. Next, we integrated a second similar set of 160000 cases with z o or o equal to 0.5, in order to get a better representation of the large inclinations. This time, we found 167 periodic orbits, but it was later discovered that at least 152 of them belong to the same families as the first set with 0.1Our paper quickly describes the definition of the problem, with special emphasis on the symmetry properties, especially for the case of masses with equal primaries. We also allow a section to describe our approach to stability and characteristic exponents, following our paper on this subject, (Broucke, 1969). Then we describe our numerical results, as much as space permits in the present paper.We found basically only about a dozen families with sizeable segments of simple stable periodic orbits. Some of them are around one of the two stars only but we do not describe them here because of a lack of space. We extended about 170 periodic orbits to families of up to 500 members, (by steps of 0.005 in the parameter), although, in many cases, we do not know the real end of the families. We also give an overview of the different types of periodic orbits that are most often encountered. We describe some of the rather strange orbits, (some of which are actually stable).  相似文献   

11.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

12.
We consider a restricted three-body problem where the primaries are moving in an elliptic collision orbit and the infinitesimal mass moves in a three dimensional space. This paper is devoted to prove analytically the existence of several families of symmetric periodic solutions as continuation of Keplerian circular orbits. In our approach the perturbing parameter is related with the energy of the primaries.  相似文献   

13.
Accurate numerical continuation of families of plane symmetric direct periodic orbits around the large primary in the Sun-Jupiter case of the restricted problem of three bodies allows the determination of the vertical branching points where families of three-dimensional symmetric periodic orbits bifurcate from the planar ones. Three families of plane periodic orbits, and the initial segments of ten bifurcating families of three-dimensional ones are determined. The stability of these families is examined and examples of their orbits are illustrated.  相似文献   

14.
In this paper several monoparametric families of periodic orbits of the 3-dimensional general 3-body problem are presented. These families are found by numerical continuation with respect to the small massm 3, of some periodic orbits which belong to a family of 3-dimensional periodic orbits of the restricted elliptic problem.  相似文献   

15.
The elliptic restricted problem of three bodies with unit eccentricity of the primaries is used to generate a family of periodic orbits in the general problem of three bodies. The parameter of the family is the mass of one of the participating bodies. This varies from zero to a termination value. The mass ratio of the primaries of the unperturbed problem (three to five) is maintained throughout the generation of the family. In this way an asymmetry is introduced generalizing the Copenhagen elliptic problem as the generating model. All members of the family experience a close approach and a collision between the primaries during half of the period of the orbit, therefore, the family is classified as Class Two.  相似文献   

16.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

17.
This work considers periodic solutions, arc-solutions (solutions with consecutive collisions) and double collision orbits of the plane elliptic restricted problem of three bodies for =0 when the eccentricity of the primaries,e p , varies from 0 to 1. Characteristic curves of these three kinds of solutions are given.  相似文献   

18.
A timing condition for consecutive collision orbits in the planar, circular three-body problem has been extended to the elliptic restricted problem for =0. The expression developed relates eccentric anomalies at the time of collision. Some families of solutions are presented.  相似文献   

19.
We present families of periodic orbits and their stability for the exterior mean motion resonances 1:2, 1:3 and 1:4 with Neptune in the framework of the planar circular restricted three-body problem. We found that in each resonance there exist two branches of symmetric elliptic periodic orbits with stable and unstable segments. Asymmetric periodic orbits bifurcate from the corresponding symmetric ones. Asymmetric periodic orbits are stable and the motion in their neighbourhood is a libration with respect to the resonant angle variable. In all the families of asymmetric periodic orbits the eccentricity extends to high values. Poincaré sections reveal the changes of the topology in phase space.  相似文献   

20.
We study symmetric relative periodic orbits in the isosceles three-body problem using theoretical and numerical approaches. We first prove that another family of symmetric relative periodic orbits is born from the circular Euler solution besides the elliptic Euler solutions. Previous studies also showed that there exist infinitely many families of symmetric relative periodic orbits which are born from heteroclinic connections between triple collisions as well as planar periodic orbits with binary collisions. We carry out numerical continuation analyses of symmetric relative periodic orbits, and observe abundant families of symmetric relative periodic orbits bifurcating from the two families born from the circular Euler solution. As the angular momentum tends to zero, many of the numerically observed families converge to heteroclinic connections between triple collisions or planar periodic orbits with binary collisions described in the previous results, while some of them converge to “previously unknown” periodic orbits in the planar problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号