首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water vapour tracers can provide useful information on winds at ≈ 500mb by observing the 6·7μ radiances. This fills the data gap in the cloud motion winds provided by conventional meteorological geostationary satellites. There is no geostationary satellite at present over the Indian Ocean with 6·7μ imaging capability to provide mid-tropospheric winds. The potentials of 6·7μ radiances, available from polar orbiting satellites, for mid-tropospheric circulation features have been examined in this study. Tiros-N satellite data of May 1979 and ECMWF level-IIIb wind data were analysed to relate the radiances with the streamlines. We find that the radiances of 6·7μ from orbiting satellites agree well with the wind field.  相似文献   

2.
The aim of this paper is to study the feasibility of deriving vertical wind profiles from current satellite observations. With this aim, we carried out complex empirical orthogonal function (CEOF) analysis of a large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first two CEOFs explain 67% of the total variance in wind fields. While the first principal component is well correlated with the winds at 850 mb (r = 0:80), the second one is highly correlated with winds at 200 mb (r = 0:89). This analysis formed the basis of a retrieval algorithm which ensures the retrieval of vertical profiles of winds using satellite tracked cloud motion vector winds. Under the assumption that accurate measurements of wind are available at the above mentioned levels, the r.m.s. error of retrieval of each component of wind is estimated to range between 2 ms-1 and 6 ms-1 at different levels, which is much less than the natural variance of winds at these levels. For a better visualization of retrieval, we have provided retrieved and true wind profiles side by side for four typical synoptic conditions during the monsoon season.  相似文献   

3.
The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it within situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds suffered from easterly bias of 1.0–1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0–3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001.  相似文献   

4.
Sea surface winds and coastal winds, which have a significant influence on the ocean environment, are very difficult to predict. Although most planetary boundary layer (PBL) parameterizations have demonstrated the capability to represent many meteorological phenomena, little attention has been paid to the precise prediction of winds at the lowest PBL level. In this study, the ability to simulate sea winds of two widely used mesoscale models, fifth-generation mesoscale model (MM5) and weather research and forecasting model (WRF), were compared. In addition, PBL sensitivity experiments were performed using Medium-Range Forecasts (MRF), Eta, Blackadar, Yonsei University (YSU), and Mellor–Yamada–Janjic (MYJ) during Typhoon Ewiniar in 2006 to investigate the optimal PBL parameterizations for predicting sea winds accurately. The horizontal distributions of winds were analyzed to discover the spatial features. The time-series analysis of wind speed from five sensitivity experimental cases was compared by correlation analysis with surface observations. For the verification of sea surface winds, QuikSCAT satellite 10-m daily mean wind data were used in root-mean-square error (RMSE) and bias error (BE) analysis. The MRF PBL using MM5 produced relatively smaller wind speeds, whereas YSU and MYJ using WRF produced relatively greater wind speeds. The hourly surface observations revealed increasingly strong winds after 0300 UTC, July 10, with most of the experiments reproducing observations reliably. YSU and MYJ using WRF showed the best agreements with observations. However, MRF using MM5 demonstrated underestimated winds. The conclusions from the correlation analysis and the RMSE and BE analysis were compatible with the above-mentioned results. However, some shortcomings were identified in the improvements of wind prediction. The data assimilation of topographical data and asynoptic observations along coast lines and satellite data in sparsely observed ocean areas should make it possible to improve the accuracy of sea surface wind predictions.  相似文献   

5.
Auto-correlation analysis of ocean surface wind vectors   总被引:1,自引:0,他引:1  
The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measuredin situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall of the autocorrelation in the first few hours with a decorrelation time scale of about 6 hours. For a meaningful comparison between satellite derived products andin situ data, satellite data acquired at different time intervals should be used with appropriate ‘weights’, rather than treating the data as concurrent in time. This paper presents a scheme for temporal weighting using the auto-correlation analysis. These temporal ‘weights’ can potentially improve the root mean square (rms) deviation between satellite andin situ measurements. A case study using the TRMM Microwave Imager (TMI) and Indian Ocean buoy wind speed data resulted in an improvement of about 10%.  相似文献   

6.
The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model results have been compared with in-situ observations and satellite altimeter data. This study also evaluated the performance of the wind products during local phenomenon like sea breeze, since it has a significant impact on the wave prediction in the Indian coastal region. Hence we explored the possibility of studying the impact of diurnal variation of winds on coastal waves using different wind fields. An analysis of the model performance has also been made during high wind conditions with the inference that blended winds generate more realistic wave fields in the high wind conditions and are able to produce the growth and decay of waves more realistically.  相似文献   

7.
The Kuroshio Extension (KE) is the key area where the water heats the atmosphere in the northwestern Pacific Ocean in winter. Previous studies show that the active eddies in the KE area can affect sea surface temperature and thus sea surface winds. The present study reviewed the progress about the influences of the eddies on local atmosphere in recent years. Analysis and comparison were made especially for the achievements from shipboard sounding data, satellite observations and numerical experiments. Based on the geostrophic adaptation theory involved in atmospheric anomalies induced by the eddies, the following new scientific deductions were suggested: Air pressure adjustment mechanism dominated in the atmospheric response to eddies under the conditions of weaker wind speed over the eddies. The influence of eddies was often limited in the atmospheric boundary layer. On the other hand, vertical mixing mechanism played a major role in the response of the atmosphere to warm (cold) eddies when air moved faster over the eddies. Surface wind speed increased (decreased) over the warm (cold) water. Significant wind convergence took place downwind the warm water, and large amount of water vapor was transported also downwind from the warm water surface. The positive feedback between water vapor condensation and rising air forced by the surface convergence provided necessary conditions for the development of strong convection in atmosphere. These deductions will be conducive to further depicting the impact of oceanic eddies on the atmosphere quantitatively.  相似文献   

8.
Probability distributions of surface wind speeds (SWS) near coastal regions are needed for applications such as estimating offshore wind power and ocean surface fluxes and for offshore wind risk assessments. Ocean surface wind speed probability distribution (PDF) is characterized using three-year QuikSCAT and AIRS satellite observations in the southeast Pacific of marine stratus and stratocumulus (MSC) regions. Seasonal variation is removed from wind statistics. It was found that the observed SWS standard deviation has a linear positive relationship with its mean SWS; while the SWS skewness decreases with mean SWS in regimes of strong winds and increases with mean SWS in regimes of weak winds. A simple 1D conceptual model is developed near the Peruvian region, which successfully reproduces the observed relationship between higher moments of SWS and its mean value. The model based physical picture among ocean surface winds, SST, and marine boundary clouds are supported by three-year QuikSCAT surface wind observations and fifteen-year ERA40 re-analysis data. Model sensitive tests suggest that large-scale divergence, and strengths of momentum and cloud fluctuations have significant effects on the ocean SWS-PDF in marine stratus and stratocumulus regions.  相似文献   

9.
用气象卫星遥感监测沙尘暴的方法和初步结果   总被引:38,自引:2,他引:38       下载免费PDF全文
本文在简要介绍气象卫星探测特点的基础上,着重讨论了利用NOAA卫星、FY-1C卫星和GMS-5及FY-2B卫星上的星载扫描辐射仪监测沙尘暴的原理和方法.最后以2000年4月6~7日发生在我国内蒙古地区至华北一带的强沙尘暴为例,说明用这种手段不仅能监测到沙尘暴的发生,还能有效地监测其发展和演变,是监测和预警沙尘暴的重要手段和依据.  相似文献   

10.
The study analyses the numbers of days with strong winds in Krakow during the period 2000?C2007 using anemometric records and fire department data. Patterns are identified in the seasonal and annual variation of strong winds. Particular attention is devoted to extreme events. Based on measurements, the study finds that strong winds mostly occurred in winter. Fire department call-out data show that repair of damage caused by strong winds and gusts of wind was needed equally as frequently in summertime. Strong winds accompanying summer storms are often of a local nature and are not always recorded by weather stations. Wind damage was mapped using requests for fire department assistance.  相似文献   

11.
卫星导风在台风路径预报中的应用进展   总被引:1,自引:0,他引:1  
台风作为全球危害巨大的自然灾害,对其路径预报的准确度尤为重要.在常规观测资料稀少的热带洋面上,卫星云图是监测热带气旋的主要工具,其中卫星导风技术,通过对云及晴空区特征的追踪,反演出的卫星风矢,在一定程度上弥补了海洋上由于风场观测资料稀缺对台风路径研究的限制,显著提高了台风路径预报水平.结合近年来逐步成熟的卫星导风中的云导风技术在台风预报上的应用,总结了国内云导风技术在改善台风路径预报中的贡献,如加密观测资料、台风中心定位、优化数值模式初始场和客观分析场、构造人造台风Bogus模型以及由其揭示的发展和不发展热带气旋的对流层上部环流特征,同时展望了卫星导风技术及其资料在台风预报实际应用中有待进一步研究的内容.  相似文献   

12.
根据行星探测的资料,综合分析了水星、金星、地球(包括月球)、火星的大气层和水体的发育特征,对比了金星、火星的大气层与水体同地球的差异。类地行星质量小、体积小、密度大、旋转慢、卫星少甚至没有、挥发性元素较类木行星少、距离太阳较近,早期残留的原始大气层已经被早期太阳在金牛变星阶段的强烈太阳风所驱赶,加上巨大而频繁的撞击作用,使原始大气层被驱赶殆尽。现在的大气层是次生的,是由行星内部的去气作用形成的。类地行星的大气层、水体的发育和表生作用的特征与行星的质量大小(表征行星内部能量的大小和构造活动的强烈及持续时间)及行星与太阳的距离等因素有关。在类地行星中,地球和金星质量最大,逃逸速度最大,可将更多的气体“束缚”在它们表面,因此它们的大气有着复杂的组成和较大的密度。火星质量较小,逃逸速度不到地球的一半,在漫长的演化历史中,大气逐渐逸散进入太空,大气密度变得很稀薄。水星质量更小,而且最靠近太阳,不仅太阳风的驱赶作用强烈,而且表面温度高,气体分子的热运动更加剧烈,加剧了大气的逸散,所以水星的大气层极为稀薄,并且主要为太阳风成分。月球质量最小,几乎没有大气层,更没有水体的发育。行星的热演化历史对大气层和水体发育具有重要的制  相似文献   

13.
Remote sensing instruments have been used to identify, track and in some cases quantify atmospheric constituents from space-borne platforms for nearly 30 years. These data have proven to be extremely useful for detecting hazardous ash and gas (principally SO2) clouds emitted by volcanoes and which have the potential to intersect global air routes. The remoteness of volcanoes, the sporadic timings of eruptions and the ability of the upper atmosphere winds to quickly spread ash and gas, make satellite remote sensing a key tool for developing hazard warning systems. It is easily recognized how powerful these tools are for hazard detection and yet there has not been a single instrument designed specifically for this use. Instead, researchers have had to make use of instruments and data designed for other purposes. In this article the satellite instruments, algorithms and techniques used for ash and gas detection are described from a historical perspective with a view to elucidating their value and shortcomings. Volcanic clouds residing in the mid- to upper-troposphere (heights above 5 km) have the greatest potential of intersecting air routes and can be dispersed over many 1,000s of kilometres by the prevailing winds. Global air traffic vulnerability to the threat posed by volcanic clouds is then considered from the perspectives of satellite remote sensing, the upper troposphere mean wind circulation, and current and forecast air traffic density based on an up-to-date aircraft emissions inventory. It is concluded that aviation in the Asia Pacific region will be increasingly vulnerable to volcanic cloud encounters because of the large number of active volcanoes in the region and the increasing growth rate of air traffic in that region. It is also noted that should high-speed civil transport (HSCT) aircraft become operational, there will be an increased risk to volcanic debris that is far from its source location. This vulnerability is highlighted using air traffic density maps based on NOx emissions and satellite SO2 observations of the spread of volcanic clouds.  相似文献   

14.
Hailstorms represent one of the major sources of damage and insurance loss to residential, commercial, and agricultural assets in several parts of Central Europe. However, there is little knowledge of hail risk across Europe beyond local historical damage reports due to the relative rarity of severe hail events and the lack of uniform detection methods. Here we present a new stochastic catalog of hailstorms for Europe. It is based on satellite observations of overshooting cloud tops (OT) that indicate very strong convective updrafts and hail reports from the European Severe Weather Database (ESWD). Historic hail events are defined based on OT detections from satellite infrared brightness temperatures between 2004 and 2011 for the warm seasons (April–September). The satellite-based historical event properties are complemented by hailstone observations from ESWD to stochastically simulate more than 1 million individual events with an event footprint resolution of 10 km. The final hail event catalog presented in this paper is the first one with a spatial event distribution that is based on a single homogeneous observation source over Europe. Areas of high hail probability or hail risk are found over Central and Southern Europe, including mountainous regions such as the Alps or the Pyrenees. Another region of relatively high hail risk is present over central Eastern Europe.  相似文献   

15.
16.
17.
The prediction and assessment of the loss of group residential buildings under fierce winds are not only an important but also a very basic work. Many rural buildings, especially situated in southeastern of China, have suffered great damage and losses during such wind events in past 10 years. One new methodology is proposed in this study in order to estimate and evaluate the loss reasonably based on group building types and distribution, wind intensities and directions. This methodology comprehensively considers the mechanisms of interaction between the roof tiles, roof panels, doors and windows, which are more likely damaged seriously during fierce winds, the physical properties of those components, the wind pressure coefficients on the surface of group buildings in different wind directions, etc. Then Monte Carlo simulation is used to estimate the damage of group residential buildings under simulated fluctuating winds with different speeds and measured typhoon records. The simulation results indicate that our proposed quantified assessment method can be utilized for official, developers, architects, designers and homeowners to estimate and mitigate the losses that might be experienced during wind-related disasters either pre- or post-construction.  相似文献   

18.
Several wind fields developed for Hurricane Katrina (2005) in the US Gulf of Mexico (GOM) are applied with the ADCIRC hydrodynamic model to explore the sensitivity of predictions of coastal surges to wind fields developed by alternative methods. The alternative model predictions are evaluated against water level measurements provided by gages at two coastal locations. It is found that all the post-event analyzed wind fields yield a range of predictions of only ±10% of the available peak surge measurements regardless of whether the wind fields are produced by dynamical boundary layer models, kinematic analysis methods or a blend. However, the richness of meteorological forcing data in the GOM is not typically matched in other basins affected by tropical cyclones and errors may be much larger where storm intensity and size parameters are estimated mainly from satellite data. The attributes and remaining critical deficiencies of current methods for surface wind specification in both data-rich and data-poor environments are reviewed.  相似文献   

19.
Sand and dust storms are causing hazards and problems in aviation as well as the dangers and distresses they cause on living things. The low meteorological visibility, the presence of strong winds with gust, and the transport of dust and sand particles by the wind are dangerous on landing and departure of aircrafts, and even on planes that are parked. The main aim of the study is to examine the meteorological conditions causing the dust storm that took place in the Arabian Peninsula on February 28, 2009, and to determine the source of dust caused dust storm, sand storm, blown sand, and blown dust at the airports. Within the scope of the study, aviation routine weather report (METAR) and aviation selected special weather report (SPECI) reports have been assessed at many airports over Arabian Peninsula (AP), the northern part of the AP and North Africa. As model outputs; NCEP–DOE Reanalysis 2 data, BSC–DREAM8B, and HYSPLIT model were used. In the satellite images; METEOSAT MSG dust RGB images, MODIS, and Kalpana-1 data were used. According to obtained results, dust storms were detected in Bahrain, Kuwait, Saudi Arabia, and United Arab Emirates (UAE). At Al-Ahsa Airport in Saudi Arabia, the lowest visibility measured on February 28, 2009, dropping to 200 m, which was dominated by blowing sand. The source region of the dust observed at Dubai Airport in UAE is the eastern regions of the Rub’al Khali Desert located between Saudi Arabia, Oman, and UAE.  相似文献   

20.
The rise of total water levels at the coast is caused primarily by three factors that encompass storm surges, tides and wind waves. The accuracy of total water elevation (TWE) forecast depends not only on the cyclonic track and its intensity, but also on the spatial distribution of winds which include its speed and direction. In the present study, the cyclonic winds are validated using buoy winds for the recent cyclones formed in the Bay of Bengal since 2010 using Jelesnianski wind scheme. It is found that the cyclonic winds computed from the scheme show an underestimate in the magnitude and also a mismatch in its direction. Hence, the wind scheme is suitably modified based on the buoy observations available at different locations using a power law which reduces the exponential decay of winds by about 30%. Moreover, the cyclonic wind direction is also corrected by suitably modifying its inflow angle. The significance of modified exponential factor and inflow angle in the computation cyclonic winds is highlighted using statistical analysis. A hydrodynamic finite element-based Advanced Circulation 2D depth integrated (ADCIRC-2DDI) model is used here to compute TWE as a response to combined effect of cyclonic winds and astronomical tides. As contribution of wave setup plays an important role near the coast, a coupled ADCIRC + SWAN is used to perceive the contribution of wind waves on the TWE. The experiments are performed to validate computed surge residuals with available tide gauge data. On comparison of observed surge residuals with the simulations using modified winds from the uncoupled and coupled models, it is found that the simulated surge residuals are better compared, especially with the inclusion of wave effect through the coupled model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号