首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

The suspended sediment rating curves for six stations on four rivers in western and northern Greece are investigated. For each station the suspended sediment load is a power function of the water discharge, which may be distinguished according to wet and dry seasons; the latter yields higher sediment loads for a given discharge than the former. This is due to the higher erosivity of dry season rainfall compared to wet season rainfall producing the same runoff. All rating curve exponents b lie in the range 2.5–3.5 for the wet and 2.0–3.0 for the dry season and are related to the constants a of the curves by empirical equations. The variation in a and b is explained in terms of the annual precipitation and area of the basin, the hypsometric fall, the main channel length, and the average bedslope of the river from the basin divide to the station, through empirical relationships, which also permit the prediction of rating curves for ungauged basins.  相似文献   

3.
The upper part of the Huanghe (Yellow River) drainage basin supplies 50–60% of the annual water discharge and only 10% of the total river sediment load, while the middle reaches contribute 30–40% of the water flow and 90% of the annual sediment load, because of severe erosion over the Loess Plateau. Large variations in both annual water discharge and sediment load occur in the Huanghe. Heavy sedimentation in the lower reaches of the channel makes the river bed aggrade several centimetres per year. Of the suspended sediment in the river, 90–95% is deposited in the lower part of the river course and in the coastal shallow water area; less than 5–10% escapes from Laizhou Bay and enters the Central Bohai and/or North Huanghai (Yellow Sea). The active delta complex now propagates seawards at a mean rate of 42 km2 year−1.  相似文献   

4.
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The relation between runoff volume and sediment yield for individual events in a given watershed receives little attention compared to the relation between water discharge and sediment yield, though it may underlie the event-based sediment-yield model for large-size watershed. The data observed at 12 experimental subwatersheds in the Dalihe river watershed in hilly areas of Loess Plateau, North China, was selected to develop and validate the relation. The peak flow is often considered as an important factor affecting event sediment yield. However, in the study areas, sediment concentration remains relatively constant when water discharge exceeds a certain critical value, implying that the heavier flow is not accompanied with the higher sediment transport capacity. Hence, only the runoff volume factor was considered in the sediment-yield model. As both the total sediment and runoff discharge were largely produced during the heavy-discharge stage, and the sediment concentration was negligibly variable during this stage, a proportional function can be used to model the relation between event runoff volume and sediment yield for a given subwatershed. The applicability of this model at larger spatial scales was also discussed, and it was found that for the Yaoxinzhuang station at the Puhe River basin, which controls a drainage area of 2264km2, a directly proportional relation between event runoff volume and sediment yield may also exist.  相似文献   

7.
《国际泥沙研究》2022,37(5):639-652
The Jinsha River comprises the upper reaches of the Yangtze River, which is the river section with the highest sediment content. Monitoring of sediment transport in the Jinsha River is done to the guarantee for the normal operation of the Three Gorges Reservoir. In the current study, a copula function was used to do a joint probability analysis of the water and sediment in the Jinsha River Basin (JRB), further a sediment load prediction model based on the copula function also was constructed. The results show that the average annual flow from 2001 to 2018 at the outlet of the Jinsha River (Yibin station) is about 60.43 billion m3, and the average annual sediment load is about 58.82 million t. The linear correlation coefficient between annual flow and annual sediment load is 0.28. The best marginal distribution for annual flow and sediment load is Pearson Type Three (PE3) and Generalized Normal (GNO), respectively, and the best fit for the combined distribution of the two variables is the Frank copula function. The synchronous probability of water and sediment occurrence is 0.459, and the asynchronous probability is 0.541. Based on the copula prediction model, the sediment load can be effectively simulated, and the correlation coefficient between the simulated sequence and the measured sequence reached 0.93. The current study provides important significance for the analysis of water and sediment in the JRB, which is beneficial to the management of Three Gorges Reservoir sediment discharge in the upstream and downstream.  相似文献   

8.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
《国际泥沙研究》2020,35(4):365-376
The Yom River is one of the four major sediment sources to the Chao Phraya River in Thailand. Human activities and changes in climate over the past six decades may have affected the discharge and sediment load to some extent. In the current study, the river discharge and sediment characteristics in the mainstream of the Yom River were investigated using the field observation data from 2011 to 2013 and the historical river flow and sediment data from 1954 to 2014 at six hydrological stations operated by the Royal Irrigation Department of Thailand (RID). The non-parametric Mann-Kendall test and double mass curve were used to analyze the sediment dynamics and temporal changes in the discharge of the Yom River. The results revealed that the sediment was mainly transported in suspension, and the bed-to-suspended sediment loads ratio varied between 0 and 0.05. The daily suspended sediment load (SSL) in the upper and middle basins had a strong correlation with the daily discharge and could be represented by power equations with coefficients of determination higher than 0.8. The daily suspended sediment load in the lower basin did not directly depend on the corresponding discharge because of the reduction in river slope and water diversion by irrigation projects. It also appeared that the river discharges and sediment loads were mainly influenced by climate variation (floods and droughts). Moreover, the average sediment transport of the upper, middle, and lower reaches were 0.57, 0.71, and 0.35 million t/y, respectively. The sediment load in the lower basin decreased more than 50% as a result of changes in the river gradient (from mountainous to floodplain areas). The results from sediment analysis also indicated that the construction of the Mae Yom Barrage, the longest diversion dam in Thailand, and land-use changes did not significantly affect the sediment load along the Yom River.  相似文献   

10.
The hydroclimatic conditions of water runoff formation and the hydrography of Parana and Uruguay river basins in the South America are considered. A survey of the recent studies of the hydrological regime of these rivers is given. Observation data are used to evaluate the long-term average values of water runoff and suspended sediment yield in the Parana and Uruguay and their variations along the rivers. Characteristics of many-year runoff variations in the rivers were evaluated. A climate-induced increase was identified in the Parana and Uruguay water runoff, and the corresponding present-day trends in river runoff variations in both rivers were evaluated. The total water runoff and suspended sediment yield of the Parana and Uruguay into La Plata estuary were calculated. Water balance of the drainage basin of La Plata estuary was characterized.  相似文献   

11.
曾冰茹  李云良  谭志强 《湖泊科学》2023,35(5):1796-1807
由于气候变化和人类活动等多重影响,流域河湖水系格局与连通程度发生了显著变化,进而引发洪涝灾害等一系列水资源问题。本文以鄱阳湖流域为研究区,基于Google Earth Engine(GEE)提取1989—2020年5期水系数据,采用图论方法构建水系评价体系,定量分析该地区近30年来水系格局和结构连通性的时空演变特征,并结合该时期地形、土地利用和归一化植被指数(NDVI)等数据,利用连通性指数(index of connectivity,IC)评估功能连通性的动态变化,进而探讨水文连通与径流量和输沙量的联系。结果表明,近30年来鄱阳湖流域水系结构趋于复杂化,主要体现在流域北部。除干流外,其他等级河流的数量和长度均有所增加,其中Ⅲ级河流最为明显。河网密度、水面率、河网复杂度和发育系数均呈增加趋势,2000年后的变化率约为2000年前的两倍。水系连通环度、节点连接率和水系连通度总体增加,结构连通性呈好转趋势且变化幅度较小。功能连通分析表明,近30年来大部分流域IC减少,流域下游靠近主河道的平坦地区IC较高,上游远离河道的植被密集区域IC较低。此外,IC与年径流量和输沙量表现为显著的正相关性(...  相似文献   

12.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

13.
The Jialingjiang River basin is one of the main sediment contributing areas in the upper reaches of the Changjiang River. Great changes have taken place in the runoff and sediment discharge in recent years. Comparing the data of 1991-2003 with the data of 1954-1990, the annual runoff of the Jialingjiang River basin decreased by 23 %, and the suspended sediment transport decreased by 74% or 105 million tons. The main factors affecting the reduction include a decrease in rainfall, sediment detention of hydraulic structures, soil and water conservation activities, sedimentation and sand dredging in the river channel. Thorough investigation and analysis of the contribution of each factor to the sediment decrease at Beibei Station was determined for the first time. The following are the contributing percentages for each factor: a decrease in runoff accounted for 32.9%; soil and water conservation measures accounted for 16.4%; sediment detention of hydraulic structures accounted for 30.5%; sedimentation, river channel sand dredging, and other factors accounted for 20.2%. These findings are very important for forecasting the trend of inflow sediment discharge variation.  相似文献   

14.
Knowledge of sediment exports from continental areas is essential for estimating denudation rates and biogeochemical cycles. However, the estimation of current sediment fluxes to the sea is often limited by the availability and quality of sediment discharge data. This study aims to quantify the relative contributions of French rivers to the sediment discharge to the ocean. Sediment fluxes were assessed using the French river quality database, which is characterized by a low temporal resolution but long‐term measurement periods. An improved rating curve approach (IRCA) using daily discharge data, which allows the estimation of mean annual sediment loads from infrequent sediment concentration data, was used to calculate sediment fluxes. The resulting mean annual sediment loads show that French rivers export c. 16.21 Mt yr‐1 of sediments to the sea. Among the 88 defined French rivers flowing to the sea, the four largest basins (Loire, Rhone, Garonne and Seine) export 13.2 Mt yr‐1, which corresponds to 81.3% of total exports. No relationship was found between the mass of exported sediment and the size of the drainage basins. This is due to the variety of river basin typologies among these rivers, including lowland rivers in temperate climates, such as the Seine on the one hand and rivers draining mountainous areas in Alpine/Mediterranean areas on the other hand, such as the Rhone. The latter contributes 60% to the total sediment export for France while its drainage area is only 19% of the total area considered. Differences between the river basins considered are also shown by temporal indicators describing the duration of the exports, which may be linked with sediment production processes over drained areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Although the importance of ENSO on hydrological anomalies has been recognized, variations in sediment fluxes caused by these extreme events are poorly documented. The effect of ENSO is not limited to changes in sediment mobilization. Since ENSO events can affect terrestrial ecosystems, they may have important effects on sediment production and transport in river basins over time spans that are longer than the duration of the event itself. The Catamayo‐Chira basin is an interesting casestudy for investigating these geomorphic implications. The objectives were: (i) to study the effect of ENSO on stream flow and sediment yields in the basin, (ii) to investigate if ENSO events affect sediment yields in the post‐ENSO period and (iii) to understand which factors control the ENSO and post‐ENSO basin response. During strong negative ENSO periods, mean annual stream flow discharge at the inlet of the Poechos reservoir in the lower basin was 5.4 times higher than normal annual discharges, while average sediment fluxes exceeded those of normal years by a factor of about 11. In two heavily affected periods, 45.9% of the total sediment yield in the 29 years observation period was generated. Sediment fluxes in the post‐ENSO period are lower than expected, which proves post‐ENSO event dynamics are significantly different from pre‐event dynamics. Our analysis indicates the increase of vegetation growth in the lower basin is not the main reason explaining considerable sediment flux decrease in post‐ENSO periods. During strong ENSO events, sediment in alluvial stores in the lower part of the basin is removed due to enlarging and deepening of channels. In post‐ENSO periods, normal discharges and persisting sediment supplies from the middle/upper basin lead to river aggradation and storage of large amounts of sediment in alluvial plains. The decrease in sediment export will last for several years until the equilibrium is re‐established. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(1):166-170
Abstract

Freshwater and sediment are crucial to the development and health of aquatic and wetland ecosystems in deltaic coastal regions. This study examines the long-term freshwater inflow (1940–2002) and total suspended solid loading (1978–2001), and their relationships with climate variables in three major river watersheds to Lake Pontchartrain, the largest inland estuary in the USA. The results show an average total annual freshwater inflow of 5.04 km3 and an average total annual sediment loading of 210 360 t, with the highest contributions from the Amite River watershed. Over 69% of annual inflow occurred within the six months from December to May. About 66–71% of the annual total suspended solid loading occurred within the four months from January to April. An increasing trend of annual water inflow and sediment discharge was found in the Amite River watershed over the past 60 years, coinciding with the fastest population growth in this upper Lake Pontchartrain basin.  相似文献   

17.
《水文科学杂志》2013,58(3):531-542
Abstract

River corridor wetland restoration and freshwater diversion from the lower Mississippi River are being considered as two major options to reduce nitrogen input to the Gulf of Mexico. However, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters by these wetland systems. This study quantified the nitrogen inflow and outflow for the largest distributary basin of the Mississippi River, the Atchafalaya River Swamp basin. The goal of the study was to seek answers to three critical questions: (a) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water, or is it releasing more nitrogen into the Gulf? (b) How do the nitrogen removal or release rates fluctuate seasonally and annually? (c) What are the relationships between the nitrogen removal capacity and the hydrological conditions in the basin such as river stage and discharge? By utilizing the long-term (1978–2002) river discharge and water quality data, monthly and annual nitrogen fluxes were quantified, and their relationships with the basin hydrological conditions investigated. A total nitrogen—sum of the total Kjeldahl nitrogen (TKN) and nitrate plus nitrite nitrogen (NO3+NO2)—mass input—output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the nitrogen removal potential for this, the largest freshwater swamp basin in North America. The results from this study showed that, over the past 25 years, the Atchafalaya River Swamp basin acted as a source for NO3+NO2 nitrogen, although the average annual output of NO3+NO2 nitrogen (174 584 Mg) was only slightly higher (2.3%) than the average annual input of NO3+NO2 nitrogen (170 721 Mg). The higher NO3+NO2 mass outflow occurred throughout summer and autumn, indicating an active role of biological processes on nitrogen in the overflowing waters of the Atchafalaya. However, this swamp basin has served as a major sink for organic nitrogen: the annual averages of TKN mass input and output were 200 323 and 145 917 Mg year?1, respectively, presenting a 27.2% removal rate by the basin. This large TKN reduction appeared high during springs and low during late summers, corresponding with the fluctuation of the hydrological conditions of the river.  相似文献   

18.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The Pennsylvania Department of Transportation and the US Geological Survey are cooperating in several field studies to evaluate sediment control measures used during highway construction. Among the parameters being monitored are suspended sediment concentration and turbidity. Sediment loads are calculated from suspended sediment and water discharge data, but some sediment loads must be determined indirectly because it is virtually impossible to obtain sufficient suspended sediment samples to define all runoff conditions adequately. Sediment discharge-water discharge correlation curves have proved unreliable for streams affected by highway construction, so an alternative method using the turbidity record was developed during these studies.

The field data reveal a good correlation between daily mean discharge-weighted turbidity and daily mean discharge-weighted suspended sediment concentration. Turbidity is monitored and recorded continuously, and the daily mean discharge-weighted turbidity is calculated from the turbidity and water discharge data. During periods when there are insufficient suspended sediment data, the daily mean discharge-weighted suspended sediment concentration is determined from the turbidity-sediment correlation and used with the daily mean water discharge to calculate a daily sediment load.

This method of determining sediment loads from the turbidity record suggests a possiblity for computation of sediment loads by computer. Instrumentation now in use for recording water quality parameters on digital punch tape could be used to record the output from a turbidimeter. Then, for streams having a good correlation between suspended sediment concentration and turbidity, simultaneous water discharge and turbidity data could be used to determine sediment loads by computer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号