首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stromboli is an Italian volcanic island known for its persistent state of activity, which leads to frequent mass failures and consequently to frequent tsunamis ranging from large (and rare) catastrophic events involving the entire southern Tyrrhenian Sea to smaller events with, however, extremely strong local impact. Most of tsunamigenic landslides occur in the Sciara del Fuoco (SdF) zone, which is a deep scar in the NW flank of the volcano, that was produced by a Holocene massive flank collapse and that is the accumulation area of all the eruptive ejecta from the craters. Shallow-water bathymetric surveys around the island help one to identify submarine canyons and detachment scars giving evidence of mass instabilities and failures that may have produced and might produce tsunamis. The main purpose of this paper is to call attention to tsunami sources in Stromboli that are located outside the SdF area. Further, we do not touch on tsunami scenarios associated with gigantic sector collapses that have repeat times in the order of several thousands of years, but rather concentrate on intermediate size tsunamis, such as the ones that occurred in December 2002. Though we cannot omit tsunamis from the zone of the SdF, the main emphasis is on the elaboration of preliminary scenarios for three more possible source areas around Stromboli, namely Punta Lena Sud, Forgia Vecchia and Strombolicchio, with the aim of purposeful contributing to the evaluation of the hazard associated with such events and to increase the knowledge of potential threats affecting Stromboli and the nearby islands of the Aeolian archipelago. The simulations show that tsunami sources outside of the SdF can produce disastrous effects. As a consequence, we recommend that the monitoring system that is presently operating in Stromboli and that is focussed on the SdF source area be extended in order to cover even the other sources. Moreover, a synoptic analysis of the results from all the considered tsunami scenarios leads to a very interesting relation between the tsunami total energy and the landslide potential energy, that could be used as a very effective tool to evaluate the expected tsunami size from estimates of the landslide size.  相似文献   

2.
Stromboli volcano (Aeolian Archipelago, Southern Italy) experienced an increase in its volcanic activity from late December 2012 to March 2013, when it produced several lava overflows, major Strombolian explosions, crater-wall collapses pyroclastic density currents and intense spatter activity. An analysis of the displacement of the NE portion of the summit crater terrace and the unstable NW flank of the volcano (Sciara del Fuoco depression) has been performed with a ground-based interferometric synthetic aperture radar (GBInSAR) by dividing the monitored part of the volcano into five sectors, three in the summit vents region and two in the Sciara del Fuoco. Changes in the displacement rate were observed in sectors 2 and 3. Field and thermal surveys revealed the presence of an alignment of fumaroles confirming the existence of an area of structural discontinuity between sectors 2 and 3. High displacement rates in sector 2 are interpreted to indicate the increase in the magmastatic pressure within the shallow plumbing systems, related to the rise of the magma level within the conduits, while increased displacement rates in sector 3 are connected to the lateral expansion of the shallow plumbing system. The increases and decreases in the displacement rate registered by the GBInSAR system in the upper part of the volcano have been used as a proxy for changes in the pressure conditions in the shallow plumbing system of Stromboli volcano and hence to forecast the occurrence of phases of higher-intensity volcanic activity.  相似文献   

3.
A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases. Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo. The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from the main feeding system of the volcano.  相似文献   

4.
In the last 9 years, the amount and the quality of geophysical and volcanological observations of Stromboli's' activity have undergone a marked increase. This new information highlighted that the landslides on the Sciara del Fuoco flank are tightly linked to the volcanic activity. Actually, at the beginning of the December 28, 2002, effusive eruption, the seismic monitoring network was less dense than now, and therefore it is not known if there was an increase in the landslide rate before the eruption. Despite this, it is known that a big landslide occurred 2 days after the beginning of the eruption which caused a tsunami (December 30, 2002). More recently, the effusive eruption in February 2007 was preceded by an increase in landslides on the Sciara del Fuoco flank, which were recorded by the seismological monitoring system that had been improved after the 2002–2003 crisis. These episodes led us to believe that monitoring the Sciara del Fuoco flank instability is an important topic, and that landslides might be significant short-term precursors of effusive eruptions at the Stromboli volcano. To automatically detect landslide signals, we have developed a specialized neural algorithm. This can distinguish between landslides and the other types of seismic signals usually recorded at the Stromboli volcano (i.e., explosion quakes and volcanic tremor). The discrimination results show an average performance of 98.67 %. According to the experience of the crisis of 2007, to identify changes that can be considered as precursors of effusive eruptions, we set up an automatic decision-making method based on the neural network responses. This method can operate on a continuous data stream. It calculates a landslide percentage index (LPI) that depends on the number of records that are classified by the net as landslides over a given time interval. We tested the method on February 27, 2007, including the beginning of the effusive phase. The index showed an increase as early as at 09:00 UTC on that day and reached its maximum value (100 %) at 12:00, about 40 min before the onset of the eruption. After the beginning of the effusive phase, the index remains high due to the blocks that roll down along the slope from the front of the lava flow. On the basis of these tests, we propose a decision-making method that is able to recognize a trend in the LPI similar to that of 2007 eruption, allowing the identification of precursors of effusive phases at the Stromboli volcano.  相似文献   

5.
On the 30th of December 2002 two tsunamis were generated only 7 min apart in Stromboli, southern Tyrrhenian Sea, Italy. They represented the peak of a volcanic crisis that started 2 days before with a large emission of lava flows from a lateral vent that opened some hundreds of meters below the summit craters. Both tsunamis were produced by landslides that detached from the Sciara del Fuoco. This is a morphological scar and is the result of the last collapse of the northwestern flank of the volcanic edifice, that occurred less than 5 ka b.p. The first tsunami was due to a submarine mass movement that started very close to the coastline and that involved about 20×106 m3 of material. The second tsunami was engendered by a subaerial landslide that detached at about 500 m above sea level and that involved a volume estimated at 4–9×106 m3. The latter landslide can be seen as the retrogressive continuation of the first failure. The tsunamis were not perceived as distinct events by most people. They attacked all the coasts of Stromboli within a few minutes and arrived at the neighbouring island of Panarea, 20 km SSW of Stromboli, in less than 5 min. The tsunamis caused severe damage at Stromboli.In this work, the two tsunamis are studied by means of numerical simulations that use two distinct models, one for the landslides and one for the water waves. The motion of the sliding bodies is computed by means of a Lagrangian approach that partitions the mass into a set of blocks: we use both one-dimensional and two-dimensional schemes. The landslide model calculates the instantaneous rate of the vertical displacement of the sea surface caused by the motion of the underwater slide. This is included in the governing equations of the tsunami, which are solved by means of a finite-element (FE) technique. The tsunami is computed on two different grids formed by triangular elements, one covering the near-field around Stromboli and the other also including the island of Panarea.The simulations show that the main tsunamigenic potential of the slides is restricted to the first tens of seconds of their motion when they interact with the shallow-water coastal area, and that it diminishes drastically in deep water. The simulations explain how the tsunamis that are generated in the Sciara del Fuoco area, are able to attack the entire coastline of Stromboli with larger effects on the northern coast than on the southern. Strong refraction and bending of the tsunami fronts is due to the large near-shore bathymetric gradient, which is also responsible for the trapping of the waves and for the persistence of the oscillations. Further, the first tsunami produces large waves and runup heights comparable with the observations. The simulated second tsunami is only slightly smaller, though it was induced by a mass that is approximately one third of the first. The arrival of the first tsunami is negative, in accordance with most eyewitness reports. Conversely, the leading wave of the second tsunami is positive.  相似文献   

6.
Many major volcanic flank collapses involve the failure of low-angle strata in or under the edifice. Such failures produce voluminous, destructive debris avalanches that are a major volcanic hazard. At Socompa, Las Isletas-Mombacho and Parinacota volcanoes, field studies have shown that during catastrophic flank collapse a significant segment of their substrata was detached and expelled from beneath the volcanic edifice and formed a mobile basal layer on which the sliding flanks were transported. Previous studies have proposed that gravitational flank spreading was likely involved in the onset of sudden substrata failure. The early stages of this particular type of flank collapse can be modelled under laboratory conditions using analogue models. This allows us to study the development of structures accommodating early deformation of the sliding flank during catastrophic collapse. In the experiments, the detached substratum segment (low-viscosity basal layer) was modelled with a silicone layer, and the overlying stratovolcano with a layered sand cone. The first structure developed in the models is a graben rooted in the low-viscosity basal layer. This graben forms the limits of the future avalanche-amphitheatre and divides the sliding flank into a ‘toreva’ domain (upper sliding flank) and a ‘hummock’ domain (lower sliding flank). These domains display distinctive structural patterns and kinetic behaviour. Normal faults develop in the toreva domain and inside the graben, while the hummock domain is characterised by transtensional structures. The hummock domain also over-thrusts the lower amphitheatre sides, which allows subsequent sideways avalanche spreading. Measurements show that horizontal speeds of the hummock domain are always higher than that of the toreva domain during model collapse. The main role played by the low-viscosity basal layer during this type of collapse is to control the size, shape and structural complexity of the sliding flank; it also transmits mass and momentum from the toreva to the hummock domain.  相似文献   

7.
A set of grey-purple layered volcanic rocks are found widely distributed from the mountain flank to the main peak of Daliuchong volcano, but it's difficult to identify whether they are volcaniclastic rock or lava rock just by field investigation and the crystal structure observation under microscope. The study of matrix microstructure of the volcanic rocks can help to identify the volcanic facies. We recognize the eruptive facies rocks through observation of the matrix microstructure and pore shape with comparison to those of the volcanic vent facies, extrusive facies and effusive facies rocks under microscope, thus the mentioned layered volcanic rocks could be named as dacitic crystal fragment tuff. Combining the joint work of field investigation, systematic sampling, chemical analyzing and microscopic observation, we summary the Daliuchong volcanic facies as follows:1. The effusive facies lava constitutes the base of Daliuchong volcano and was produced by early eruption.2. The explosive facies is composed of dacite crystal fragment welded tuff and volcanic breccia and mainly distributes on the W, S and NE flank of the volcanic cone.3. The volcanic conduit with its diameter more than one hundred meters is located about 100 meters south of the main peak of the Daliuchong volcano.4. The extrusive facies rock is only exposed near the peak of Daliuchong volcano.Therefore, the volcanism of Daliuchong volcano can be speculated as:Large-scale lava overflowing occurred in the early eruption period; then explosive eruptions happened; at last, the volcanisms ceased marked with magma extrusion as lava dome and plug.  相似文献   

8.
The features of seismic activity on Stromboli are discussed and compared in terms of their relationship with the main changes of volcanic activity from 1990 to 1993.We considered a statistical approach for our data analysis. Cluster analysis was used to seek out classes of spectra which might characterize the condition of the volcanic system. The classes we have found provide insights into a scenario which evolves through different phases of volcanic activity, from paroxysms to low activity. We show that episodes of lava effusion and lava fountaining are heralded by variations in the spectral features of tremor after a preparation time. This result highlights the importance of tremor, and reveals that long-term observations are key to examine slow modifications in a volcanic system such as Stromboli, characterized by open conduits, and persistent explosive activity.  相似文献   

9.
The assessment of potential volcanic eruptions is a critical aspect when evaluating the safety of populated areas. A stochastic approach has been developed for the analysis and simulation of data sampled at active volcanoes. This approach allows for the detection and quantification of time correlation, volcanic event forecasts using Cox model based simulations and volcanic tremor decomposition in order to identify potential precursors of major eruptions. The stochastic approach has been applied to data monitored at Stromboli volcano. Significant time correlation has been detected which makes Stromboli a volcano with a remarkable memory of its recent activity in comparison to other volcanoes. Forecasting of the number of strombolian events for the next few days has been performed by Monte Carlo simulations. Finally, kriging analysis of the tremor intensity has enabled time component estimation which could furnish additional monitoring variables for the forecast of paroxysmal phases at Stromboli.  相似文献   

10.
The Secche di Lazzaro (SDL) phreatomagmatic activity, with the associated Neostromboli sector collapse, represents the most powerful activity of the last 6 ky at Stromboli. As revealed by its present-day activity, Stromboli is one of the most eruptive volcanoes in Italy, and flank instability, along its NW flank, is a common process. Volcano instability is often dramatised by explosive eruptions, thus it is of crucial importance to understand the linking between volcano collapse and the plumbing system itself. The possible role of pre-eruptive magmatic processes as triggers of explosive eruptions can be mainly preserved by minerals and revealed by petrochemical studies. We studied the juvenile components (scoria and pumice) of the pyroclastic deposits from the SDL phreatomagmatic activity with the aim to understand the eruption–collapse link.  相似文献   

11.
Geomorphologic analysis of submarine and subaerial surface features using a combined topographic/bathymetric digital elevation model coupled with onshore geological and geophysical data constrain the age and geometry of giant landslides affecting the north flank of Tenerife. Shaded relief and contour maps, and topographic profiles of the submarine north flank, permit the identification of two generations of post-shield landslides. Older landslide materials accumulated near the shore (<40-km) and comprise 700 km3 of debris. Thickening towards a prominent axis suggests one major landslide deposit. Younger landslide materials accumulated 40–70 km offshore and comprise the products of three major landslides: the La Orotava landslide complex, the Icod landslide and the East Dorsal landslide complex, each with an onshore scar, a proximal submarine trough, and a distal deposit lobe. Estimated lobe volumes are 80, 80 and 100 km3, respectively. The old post-shield landslide scar is an amphitheatre, 20–25 km wide, partly submarine, now completely filled with younger materials. Age–width relationships for Tenerife's coastal platform plus onshore geological constraints suggest an age of ca. 3 Ma for the old collapse. Young landslides are all less than 560 ka old. The La Orotava and Icod slides involved failures of slabs of subaerial flank to form the subaerial La Orotava and Icod valleys. Offshore, they excavated troughs by sudden loading and basal erosion of older slide debris. The onshore East Dorsal slide also triggered secondary failure of older debris offshore. The slab-like geometry of young failures was controlled by weak layers, deep drainage channels and flank truncation by marine erosion. The (partly) submarine geometry of the older amphitheatre reflects the absence of these features. Relatively low H/L ratios for the young slides are attributed to filling of the slope break at the base of the submarine edifice by old landslide materials, low aspect ratios of the failed slabs and channelling within troughs. Post-shield landslides on Tenerife correlate with major falls in sea level, reflecting increased rates of volcanism and coastal erosion, and reduced support for the flank. Landslide head zones have strongly influenced the pattern of volcanism on Tenerife, providing sites for major volcanic centres.  相似文献   

12.
On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002–2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a 4-year database of summit soil CO2 flux on the basis of which we define the thresholds (low–medium–high) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. It is noteworthy that geochemical signals of volcanic unrest have been clearly identified before, during and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.  相似文献   

13.
A seismic survey was carried out at Stromboli volcano during August 1973. Statistical and spectral analyses of volcanic tremor and explosion quakes were performed. The statistical analysis has shown that the value of them coefficient in Ishimoto & Iida’s relation is high and that the hourly frequencies of events are fairly constant. The spectral analysis has shown a similarity in shape between tremors and explosion quakes. These events have the dominant frequency of 5 Hz at the craters area.  相似文献   

14.
This study uses on-land and offshore geological and structural data to demonstrate that a huge lateral collapse involved the SE flank of Nisyros volcano. The collapse beheaded the summit part of the volcano and also involved the submarine portion of the slope, producing a large debris avalanche deposit with a volume of about 1 km3 which has been recognized on the sea floor. On-land, stratigraphic and structural data indicate that a thick succession of lava flows (Nikia lavas) was emplaced in a huge horseshoe-shaped depression open seaward and extending below the sea. The magma-feeding system in the volcano, pre-dating and following the collapse, was structurally influenced by a dominant NE–SW direction, which is perpendicular to the newly-recognised sector collapse. The NE–SW structural trend is consistent with the regional tectonic structures found offshore around Nisyros and with the related NW–SE extension direction. We suggest that the lateral magma pressure produced by repeated magma injections along tectonic discontinuities contributed to destabilise the volcano flank. The occurrence of a pyroclastic deposit that mantled the scar left by the collapse suggests that a magma batch might have been injected inside the volcano and triggered the collapse. The lavas of the pre-collapse edifice have been deposited in alternating submarine and subaerial environments, suggesting that vertical movements might also be a major triggering mechanism for large lateral collapses. Recognition of this phenomenon is particularly important in recent/active island or coastal volcanoes, as it can trigger tsunamis.  相似文献   

15.
The meaning of the large variety of seismic waveforms showing different frequencies associated with volcanic activity is still uncertain. No definitive model for source dynamics has been proposed yet. At present, seismic models explaining the origin of the spectral content of the seismic signal are mainly linked to geometrical features of the volcanic conduit and to resonant effects induced by pressure fluctuations in a fluid-filled conduit. Such models assume the physical system to be in a steady state over a long interval of time. At Stromboli, the seismicity produced by each of the three active vents is not stable and can suddenly change in time. Therefore, the application of stable resonator models appears to be unwarranted.On the basis of infrared image analyses, atmospheric pressure, and seismic wavefield signals, we show that different frequency contents and different explosive styles occur at Stromboli at the same time at different vents. Moreover, we give evidence to support the idea that seismicity and explosivity are both controlled by a variable gas flow regime released during explosions at the top of the magma column. We have recognized two main pressure regimes, controlling the explositivity at Stromboli: one is impulsive, short and possibly produced by a gas accumulation beneath a cap rock; the other has an intermittent regime feature, and lasts longer. We demonstrate how the first one generates a monochromatic low-frequency wavefield, while the second shows a high-frequency spectrum where the frequency content depends on pressure fluctuations and on pressure gradient. We suggest different pressure growth and gas flow in the magma as the common source for both explosive style and seismic wavefield.  相似文献   

16.
A violent outburst of the Lopevi volcano in the central New Hebrides occurred on the 10th July, 1960. The eruption was preceded 4 months before by a deep earthquake (h=250 kms, Mag. 7 1/4), the focus of which was just under the volcano. An inventory of all shocks recorded in the Group since 1910 has been made and all informations about volcanic eruptions in this region have been collected. A close correlation appeared between these two phenomena. Each of the large volcanic eruptions recorded between 1910 and 1962 followed a deep focus earthquake of magnitude greater than 7. Moderate eruptions were preceded by earthquakes of magnitude between 5 3/4 and 6 3/4. The time between the tectonic shock and the climactic phase of the volcanic activity appears to be related to the distance between the focus and the volcano (i.e. the focal depth), the type of the volcano and the pattern of its eruption. It is of few months duration for the volcanoes in the Central group: Ambrym, Lopévi, the submarine volcano east of Epi and Karua. The authors tried to find the same correlations for others volcanoes in the world for which they have been able to collect dates of eruptions: Asama-Yama (Japan), Bezymiannyi (Kamtchatka), Paricutin and Izalco (Central America), Vesuve, Stromboli (Italy). Thus volcanic eruptions would appear to have their first origin in the mantle. A systematic survey of all volcanoes and deep regional earthquakes would bring evidence of this correlation and may permit a long term prediction of their eruptions.  相似文献   

17.
Five consecutive multibeam bathymetries collected before, during, and after the 2007 Stromboli eruption, combined with visual inspections, allowed us to document the morphological evolution of an ‘a’ā lava-fed delta and to reconstruct the main processes acting during its submarine emplacement. The 2007 Stromboli delta extended down to 600-m water depth and covered an area of 420?×?103 m2, with a maximum thickness of 65 m and a total estimated volume of ≈7?×?106 m3, i.e., three times larger than its subaerial counterpart. The lava delta grew mainly through the emplacement of discrete lobes about 50–150 m in size. Lobes were fed from point sources along the paleoshoreline, and their subaqueous pathways seem to be mainly controlled by the submarine morphology, with flows mostly filling in depressions left by previous lobes. The main controlling factors on the lobe morphology and thickness are the effusion rates and the pre-eruption morphology, i.e., the geometry and gradients of the basal surface. Data also shows that sudden slope failure of portions of the submarine delta may occur simultaneously with accretion, implying that a significant part of the delta material can be transported to greater depths by submarine gravity flows. The present study is relevant for future monitoring and hazard assessment during the growth of active lava-fed deltas as well as for a better interpretation of ancient volcaniclastic successions inland.  相似文献   

18.
Fuerteventura has been since early stages of its growth the result of three different adjacent large volcanic complexes: Southern, Central and Northern. The definition of these volcanic complexes and their respective growing episodes is based on volcano-stratigraphic, morphological and structural criteria, particularly radial dyke swarms. Each complex has its own prolonged history that might be longer than 10 m.y. During that time, several periods of activity alternating with gaps accompanied by important erosion took place. The evolution of each volcanic complex has been partially independent but all the three are affected by at least three Miocene tectonic phases that controlled considerably their activity. The volcanic complexes are deeply eroded and partially submerged. In the core of the Northern and the Central volcanic complexes there is a set of submarine and plutonic rocks intensely traversed by a dyke swarm, known as the Basal Complex. The Basal Complex has been interpreted in different ways but all previous authors have considered it to be prior to the subaerial shield stage of the island. Here we advance the idea that the Basal Complex represent the submarine growing stage of the volcanic complexes and the hypabyssal roots (plutons and dykes) of their successive subaerial growing episodes.Two seamounts situated nearby, southwest of the island, might be interpreted as remains of two other major volcanoes. These two volcanoes, together with those forming the present emerged island of Fuerteventura, and finally those of Famara and Los Ajaches situated further north on Lanzarote constitute a chain of volcanoes located along a lineation which is subparallel to the northwestern African coastline and which may relate to early Atlantic spreading trends in the area.  相似文献   

19.
 High-resolution bathymetric mapping has shown that submarine flat-topped volcanic cones, morphologically similar to ones on the deep sea floor and near mid-ocean ridges, are common on or near submarine rift zones of Kilauea, Kohala (or Mauna Kea), Mahukona, and Haleakala volcanoes. Four flat-topped cones on Kohala were explored and sampled with the Pisces V submersible in October 1998. Samples show that flat-topped cones on rift zones are constructed of tholeiitic basalt erupted during the shield stage. Similarly shaped flat-topped cones on the northwest submarine flank of Ni'ihau are apparently formed of alkalic basalt erupted during the rejuvenated stage. Submarine postshield-stage eruptions on Hilo Ridge, Mahukona, Hana Ridge, and offshore Ni'ihau form pointed cones of alkalic basalt and hawaiite. The shield stage flat-topped cones have steep (∼25°) sides, remarkably flat horizontal tops, basal diameters of 1–3 km, and heights <300 m. The flat tops commonly have either a low mound or a deep crater in the center. The rejuvenated-stage flat-topped cones have the same shape with steep sides and flat horizontal tops, but are much larger with basal diameters up to 5.5 km and heights commonly greater than 200 m. The flat tops have a central low mound, shallow crater, or levees that surrounded lava ponds as large as 1 km across. Most of the rejuvenated-stage flat-topped cones formed on slopes <10° and formed adjacent semicircular steps down the flank of Ni'ihau, rather than circular structures. All the flat-topped cones appear to be monogenetic and formed during steady effusive eruptions lasting years to decades. These, and other submarine volcanic cones of similar size and shape, apparently form as continuously overflowing submarine lava ponds. A lava pond surrounded by a levee forms above a sea-floor vent. As lava continues to flow into the pond, the lava flow surface rises and overflows the lowest point on the levee, forming elongate pillow lava flows that simultaneously build the rim outward and upward, but also dam and fill in the low point on the rim. The process repeats at the new lowest point, forming a circular structure with a flat horizontal top and steep pillowed margins. There is a delicate balance between lava (heat) supply to the pond and cooling and thickening of the floating crust. Factors that facilitate construction of such landforms include effusive eruption of lava with low volatile contents, moderate to high confining pressure at moderate to great ocean depth, long-lived steady eruption (years to decades), moderate effusion rates (probably ca. 0.1 km3/year), and low, but not necessarily flat, slopes. With higher effusion rates, sheet flows flood the slope. With lower effusion rates, pillow mounds form. Hawaiian shield-stage eruptions begin as fissure eruptions. If the eruption is too brief, it will not consolidate activity at a point, and fissure-fed flows will form a pond with irregular levees. The pond will solidify between eruptive pulses if the eruption is not steady. Lava that is too volatile rich or that is erupted in too shallow water will produce fragmental and highly vesicular lava that will accumulate to form steep pointed cones, as occurs during the post-shield stage. The steady effusion of lava on land constructs lava shields, which are probably the subaerial analogs to submarine flat-topped cones but formed under different cooling conditions. Received: 30 September 1999 / Accepted: 9 March 2000  相似文献   

20.
The present paper reports the results of a detailed stratigraphical, petrological and geochemical investigation on the island of Stromboli, Aeolian arc, Southern Tyrrhenian sea. Major and trace element data determined on a large quantity of samples from well-established stratigraphic positions indicate that the magmatological evolution of the island through time was more complex than previously known. The activity of the exposed part of Stromboli, which occurred over a time span of about 100 000 years, started with the emission of high-K calc-alkaline (HKCA) volcanics, which were covered by calc-alkaline (CA), shoshonitic (SHO), high-K calc-alkaline (HKCA) and potassic (KS) products. The most recent activity consists of HKCA lavas and the present-day SHO-basaltic volcanics emitted by mildly explosive “strombolian” activity. Most of the products are lavas, with minor amounts of pyroclastic rocks emplaced mainly during the early stages of activity. The transition from the SHO to the KS cycle was associated with the collapse of the upper part of the volcanic apparatus; the transition from KS to the present-day SHO activity has been found to have occurred at the time of the sliding of the western portion of the volcano that generated the “Sciara del Fuoco” depression. The rock series cropping out at Stromboli show variable enrichment in potassium, incompatible trace elements and radiogenic Sr which increase from CA through HKCA, and SHO up to KS rocks. Major, trace element and Sr-isotopic data agree in indicating that the HKCA and SHO series evolved by crystal/liquid fractionation starting from different parental liquids, whereas crustal assimilation appears to have been the leading process during the evolution of KS volcanics. Mixing processes also played a role although they can be well documented only when they occurred between magmas with different isotopic and geochemical characteristics. Geochemical modelling based on trace element and isotopic data indicates that the mafic magmas of the different volcanic series may be generated by melting of an upper mantle heterogeneously enriched in incompatible elements and radiogenic Sr by addition, via subduction, of different amounts of crustal material. Geochemical data, however, are also in agreement with the alternative hypothesis that the most mafic magmas of the different series have been generated by combined processes of fractional crystallization, assimilation and mixing of a CA magma in a deep-sited magma chamber; the mafic magmas formed by these complex processes were successively emplaced in a shallow reservoir where they evolved by simple fractional crystallization (HKCA and SHO series) and by assimilation of crustal material (KS). The occurrence of changes in the geochemical signatures of the magmas at the time of the structural modification of the volcano is believed to favour the hypothesis that the variable composition observed in the volcanic rocks of Stromboli is the result of processes occurring within the volcanic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号