首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study assesses the potential use of Mg isotopes to trace Mg carbonate precipitation in natural waters. Salda Lake (SW Turkey) was chosen for this study because it is one of the few modern environments where hydrous Mg carbonates are the dominant precipitating minerals. Stromatolites, consisting mainly of hydromagnesite, are abundant in this lake. The Mg isotope composition of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments were measured. Because Salda Lake is located in a closed basin, mass balance requires that the Mg isotopic offset between Lake Salda water and precipitated hydromagnesite be comparable to the corresponding offset between Salda Lake and its water inputs. This is consistent with observations; a ??26Mg offset of 0.8?C1.4??? is observed between Salda Lake water and it is the incoming streams and groundwaters, and precipitated hydromagnesite has a ??26Mg 0.9?C1.1??? more negative than its corresponding fluid phase. This isotopic offset also matches closely that measured in the laboratory during both biotic and abiotic hydrous Mg carbonate precipitation by cyanobacteria (Mavromatis, V., Pearce, C., Shirokova, L. S., Bundeleva, I. A., Pokrovsky, O. S., Benezeth, P. and Oelkers, E.H.: Magnesium isotope fractionation during inorganic and cyanobacteria-induced hydrous magnesium carbonate precipitation, Geochim. Cosmochim. Acta, 2012a. 76, 161?C174). Batch reactor experiments performed in the presence of Salda Lake cyanobacteria and stromatolites resulted in the precipitation of dypingite (Mg5(CO3)4(OH)2·5(H2O)) and hydromagnesite (Mg5(CO3)4(OH)2·4H2O) with morphological features similar to those of natural samples. Concurrent abiotic control experiments did not exhibit carbonate precipitation demonstrating the critical role of cyanobacteria in the precipitation process.  相似文献   

2.
Tufa samples from 16 consecutive barrages along a 13 km section of the groundwater‐fed Krka River (Slovenia) were analysed for their petrographical, mineralogical, elemental and stable carbon (δ13C) and oxygen (δ18O) isotope composition, to establish their relation to current climatic and hydrological conditions. Waters constantly oversaturated with calcite and the steep morphology of the Krka riverbed stimulate rapid CO2 degassing and subsequent tufa precipitation. The carbon isotope fractionation (Δ13C) between dissolved inorganic carbon and tufa in the Krka River evolves towards isotopic equilibrium being controlled by continuous CO2 degassing and tufa precipitation rate downstream. The Δ13C increased from 1·9 to 2·5‰ (VPDB); however, since tufa precipitation rates remain similar downstream, the major controlling factor of carbon isotope exchange is most probably related to the continuous 12CO2 degassing downstream leaving the carbon pool enriched in 13C. In the case of oxygen, the isotope fractionation (Δ18O) was found to be from 1·0 to 2·3‰ (VSMOW) smaller than reported in the literature. The observed discrepancies are due to different precipitation rates of calcite deposits because Krka tufas on cascades grow relatively faster compared to slowly precipitated calcite deposits in cave or stream pools. Due to non‐equilibrium oxygen isotope exchange between Krka tufa and water, the δ18O proxy showed from 1·2 to 8·2°C higher calculated water temperatures compared to measured water temperatures, demonstrating that δ18O proxy‐based temperature equations are not reliable for water temperature calculations of fast‐growing tufa on cascades. Because Mg is bound to the terrigenous dolomite fraction in the Krka tufa samples, the Mg/Ca was also found to be an unreliable temperature proxy yielding over up to 20°C higher calculated water temperatures.  相似文献   

3.
Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in δ18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in δ18O of pedogenic carbonate recorded after this eruption. The δ13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Three types of recent carbonate precipitates from the River Krka, Croatia, were analysed: (1) bulk tufa from four main cascades in a 34 km long section of the river flow through the Krka National Park; (2) a laminar stromatolite‐like incrustation formed in the tunnel of a hydroelectric power plant close to the lowest cascade; and (3) recent precipitates collected on artificial substrates during winter, spring and summer periods. Stable isotope compositions of carbon (δ13C) and oxygen (δ18O) in the carbonate and organic carbon (δ13Corg) were determined and compared with δ18O of water and δ13C of dissolved inorganic carbon (DIC). The source of DIC, which provides C for tufa precipitation, was determined from the slope of the line ([DIC]/[DIC0]?1) vs. (δ13C‐DIC × ([DIC]/[DIC0])) ( Sayles & Curry, 1988 ). The δ13C value of added DIC was ?13·6‰, corresponding to the dissolution of CO2 with δ13C between ?19·5 and ?23·0‰ Vienna Pee Dee Belemnite (VPDB). The observed difference between the measured and calculated equilibrium temperature of precipitation of bulk tufa barriers indicates that the higher the water temperature, the larger the error in the estimated temperature of precipitation. This implies that the climatic signals may be valid only in tufas precipitated at lower and relatively stable temperatures. The laminar crust comprising a continuous record of the last 40 years of precipitation shows a consistent trend of increasing δ13C and decreasing δ18O. The lack of covariation between δ13C and δ18O indicates that precipitation of calcite was not kinetically controlled for either of the elements. δ13C and δ18O of precipitates collected on different artificial substrates show that surface characteristics both of substrates and colonizing biota play an important role in C and O isotope fractionation during carbonate precipitation.  相似文献   

5.
表生环境中镁同位素的地球化学循环   总被引:2,自引:0,他引:2  
近些年表生环境中镁同位素分馏取得了一系列重要研究进展,这些新认识为深入理解表生环境中镁同位素地球化学循环奠定了基础。表生环境中镁同位素的地球化学循环主要涉及风化、河流搬运、碳酸盐沉淀、水岩反应等重要地质过程。风化过程中镁同位素发生显著分馏,硅酸盐风化产物中富集重的镁同位素,轻的镁同位素易进入水体。河流搬运过程中,镁同位素不发生分馏,但外源输入可能影响水体的镁同位素组成。河水汇入海洋后,碳酸盐沉淀过程可导致轻的镁同位素以碳酸盐的形式从海水中移出。在海底高温水岩反应过程中,海水中绝大多数的镁(80%~87%)都进入岩石,循环后的热液可能富集轻的镁同位素。海底低温水岩反应过程中海水的镁可以进入岩石并形成次生矿物,此过程的镁同位素分馏主要与次生矿物的形成有关。此外,海水中的镁易与黏土矿物发生交换反应,此过程黏土矿物倾向于吸附轻的镁同位素。总之,在表生环境中上地壳的镁(δ26Mg约为-0.22‰)经历风化作用、河流搬运、海洋贮存,最终以碳酸盐岩(δ26Mg一般小于-1‰)或与玄武岩发生反应的形式重新回到岩石圈。  相似文献   

6.
The large range of stable oxygen isotope values of phosphate‐bearing minerals and dissolved phosphate of inorganic or organic origin requires the availability of in‐house produced calibrated silver phosphate of which isotopic ratios must closely bracket those of studied samples. We propose a simple protocol to synthesise Ag3PO4 in a wide range of oxygen isotope compositions based on the equilibrium isotopic fractionation factor and the kinetics and temperature of isotopic exchange in the phosphate–water system. Ag3PO4 crystals were obtained from KH2PO4 that was dissolved in water of known oxygen isotope composition. Isotopic exchange between dissolved phosphate and water took place at a desired and constant temperature into PYREX? tubes that were placed in a high precision oven for defined run‐times. Samples were withdrawn at desired times, quenched in cold water and precipitated as Ag3PO4. We provide a calculation sheet that computes the δ18O of precipitated Ag3PO4 as a function of time, temperature and δ18O of both reactants KH2PO4 and H2O at t = 0. Predicted oxygen isotope compositions of synthesised silver phosphate range from ?7 to +31‰ VSMOW for a temperature range comprised between 110 and 130 °C and a range of water δ18O from ?20 to +15‰ VSMOW.  相似文献   

7.
The oxygen isotopic composition of carbonate in lakes has been used as a useful indicator in Palaeolimnological research, and has made some important contributions to our understanding of lacustrine systems. For modern lakes in arid or cold areas, however, there are few data available to test the effect of lake salinity and temperature on the oxygen isotopic composition of various carbonate sources such as ostracod, bulk carbonate, and fine-grained carbonate (< 60 μm). Here we examined the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonates, as well as that of coexisting water from Lake Qinghai and the smaller surrounding lakes and ponds on the Qinghai–Tibet Plateau. Our investigation highlights three key effects. First, the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonate in the lakes and ponds shows a clear response to lake water δ18O values, and these vary with water salinity. The relationship between lake water δ18O and salinity is not only dominated by the evaporation/freshwater input ratios, but is also controlled by the distance to the mouth of the major rivers supplying to the lake. Second, the ostracod, bulk carbonate, and fine-grained carbonate show similar isotopic change trends in the study area, and oxygen isotopic differences between ostracods and authigenic carbonate may be explained by the different water temperatures and very small ‘vital offsets’ of ostracods. Finally, the effect of water depth on temperature leads to increasing δ18O values in carbonates as water depth increases, both in benthic ostracods living on the lake bottom, as well as in bulk carbonate precipitated at the water surface.For arid, high-altitude Lake Qinghai, our results suggest that variations in the δ18O values of carbonate in Lake Qinghai are mainly controlled by the oxygen-isotope ratio of the lake water changing with water salinity. As a secondary effect, increasing water depth leads to cooler bottom and surface water, which may result in more positive δ18O values of ostracod and bulk carbonate.  相似文献   

8.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

9.
Inorganic aragonite occurs in a wide spectrum of depositional environments and its precipitation is controlled by complex physio-chemical factors. This study investigates diagenetic conditions that led to aragonite cement precipitation in Cenozoic glaciomarine deposits of McMurdo Sound, Antarctica. A total of 42 sandstones that host intergranular cement were collected from the CIROS-1 core, located proximal to the terminus of Ferrar Glacier. Standard petrography, Raman spectroscopy and electron microprobe analysis reveal a prominent aragonite cement phase that occurs as a pore-filling blocky fabric throughout the core. Oxygen isotope compositions (δ18O = −30·0 to −8·6‰ Vienna Pee-Dee Belemnite) and clumped isotope temperatures (TΔ47 = 13·1 to 31·5°C) determined from the aragonite cements provide precise constraints on isotopic compositions (δ18Ow) of the parent fluid, which mostly range from −10·8 to −7·2‰ Vienna Standard Mean Ocean Water. The fluid δ18Ow values are consistent with those of pore water, previously identified as cryogenic brine in the nearby AND-2A core. Petrographic and geochemical data suggest that aragonite cement in the CIROS-1 core precipitated from a similar brine. The brine likely formed and infiltrated sediments in flooded glacial valleys along the western margin of McMurdo Sound during the middle Miocene Climatic Transition, and subsequently flowed basinward in the subsurface. Consequently, the brine forms as a longstanding subsurface fluid that has saturated Cenozoic sediments below southern McMurdo Sound since at least the middle Miocene. Aragonite cementation in the CIROS-1 core is interpreted to reflect its proximal position to sites of brine formation and greater likelihood of experiencing brines with sustained high carbonate saturation states and Mg/Ca ratios. This unusual occurrence expands the range of known natural occurrences of aragonite cement. Given the potential for cryogenic brine formation in glaciomarine settings, blocky aragonite, as the end member of the spectrum of aragonite cement morphology, may be more widespread in glaciomarine sediments than currently thought.  相似文献   

10.
Cryogenic cave carbonate (CCC) represents a specific type of speleothem. Its precipitation proceeds at the freezing point and is triggered by freezing-induced concentration of solutes. Compared to classical speleothems (stalagmites, flowstones), CCC occurs as accumulations of loose uncemented aggregates. The grain sizes range from less than 1 μm to over 1 cm in diameter. Karst groundwater chemistry and its freezing rate upon entering the cave are responsible for highly variable grain morphology. Rapid freezing of water results in the formation of CCC powders with grain size typically below 50 μm. Slow freezing of water in caves (usually in systems where the CO2 escape is partly restricted; e.g., ice covered water pools) results in the formation of large mineral grains, with sizes from less than 1 mm to about 20 mm. The range of carbon and oxygen stable isotope compositions of CCC is larger than for a typical carbonate speleothem. Rapid freezing of water accompanied by a quick kinetic CO2 degassing results in large ranges of δ13C of the CCC powders (between –10‰ and +18‰ PDB). Slow freezing of water, with a restricted CO2 escape results in gradual increase of δ13C values (from −9‰ to +6‰ PDB; data ranges in individual caves are usually much more restricted), accompanied by a δ18O decrease of the precipitated carbonate (overall range from −10‰ to −24‰ PDB). These unusual trends of the carbonate δ18O evolution reflect incorporation of the heavier 18O isotope into the formed ice. New isotope data on CCC from three Romanian ice caves allow better understanding of the carbon and oxygen isotope fingerprint in carbonates precipitated from freezing of bulk water. CCCs are proposed as a new genetic group of speleothems.  相似文献   

11.
The oxygen isotopic composition of Stenomelania gastropod shells was investigated to reconstruct Holocene palaeoclimate change at Lake Kutubu in the southern highlands of Papua New Guinea. Oxygen isotope (δ18O) values recorded in aquatic gastropod shells change according to ambient water δ18O values and temperature. The gastropod shells appear to form in oxygen isotopic equilibrium with the surrounding water and record a shift in average shell oxygen isotopic composition through time, probably as a result of warmer/wetter conditions at ca. 600–900 and 5900–6200 cal a bp. Shorter term fluctuations in oxygen isotope values were also identified and may relate to changes in the intensity or source of rainfall. Further δ18O analyses of gastropod shells or other carbonate proxies found in the Lake Kutubu sediments are warranted. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

13.
Stable oxygen isotopic fractionation during inorganic calcite precipitation was experimentally studied by spontaneous precipitation at various pH (8.3 < pH < 10.5), precipitation rates (1.8 < log R < 4.4 μmol m− 2 h− 1) and temperatures (5, 25, and 40 °C) using the CO2 diffusion technique.The results show that the apparent stable oxygen isotopic fractionation factor between calcite and water (αcalcite–water) is affected by temperature, the pH of the solution, and the precipitation rate of calcite. Isotopic equilibrium is not maintained during spontaneous precipitation from the solution. Under isotopic non-equilibrium conditions, at a constant temperature and precipitation rate, apparent 1000lnαcalcite–water decreases with increasing pH of the solution. If the temperature and pH are held constant, apparent 1000lnαcalcite–water values decrease with elevated precipitation rates of calcite. At pH = 8.3, oxygen isotopic fractionation between inorganically precipitated calcite and water as a function of the precipitation rate (R) can be described by the expressions
at 5, 25, and 40 °C, respectively.The impact of precipitation rate on 1000lnαcalcite–water value in our experiments clearly indicates a kinetic effect on oxygen isotopic fractionation during calcite precipitation from aqueous solution, even if calcite precipitated slowly from aqueous solution at the given temperature range. Our results support Coplen's work [Coplen T. B. (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957], which indicates that the equilibrium oxygen isotopic fractionation factor might be greater than the commonly accepted value.  相似文献   

14.
The Kaiparowits Formation contains an exceptionally rich history of tectonic, climatic, and biologic conditions within the Western Interior of North America during the Campanian. Here we reconstruct aspects of the southern Cordilleran foreland basin's paleohydrology using δ18O and δ13C values determined from unionoid bivalve shells and pedogenic carbonate nodules derived from a suite of lithofacies associations. Unionoid shells derived from fluvial deposits display average water δ18O estimates of −13.7‰ ± 2.1 (1σ) (VSMOW) and shell δ13C values of −4.0‰ ± 1.5 (VPDB), whereas pedogenic carbonate nodules display average values of −6.0‰ ± 0.5 and −8.7‰ ± 0.8, respectively. Unionoid shells derived from pond deposits fall in between the two other environments with average values of −9.5‰ ± 1.8 and −5.7‰ ± 2.1, in δ18O and δ13C values respectively. Water δ18O estimates are interpreted to represent high altitude runoff within river systems, low elevation precipitation within the basin onto floodplain soils, and varying degrees of mixing between these two components within floodplain ponds. δ13C values track the isotopic composition of dissolved inorganic carbon within river, soil, and pond waters with high values likely reflecting greater contribution from chemically weathered marine carbonates exposed in the hinterland and lower values reflecting greater contributions from the in situ degradation of plant matter. Up-section there is a shift to lower δ18O values and higher δ13C values in fluvially-derived unionoid shells that post-dates an incursion of the Western Interior Seaway, but coincides with a shift in sediment provenance, an increase in basin sedimentation rates, and a change to a more anastomosed-style channel morphology within the basin foredeep depocentre. By combining the isotopic patterns with previously published sedimentologic, climate model, and paleofloral records we find: 1) additional evidence for humid, wet, and potentially monsoonal conditions within the region, 2) support for a tectonic uplift event, potentially related to Laramide deformation, and 3) greater aggradation and overbank flooding within the alluvial system in response to the uplift event.  相似文献   

15.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(13-14):1981-1989
In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.  相似文献   

17.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

18.
Based on the concepts (a) that the stable C and O isotopes combined with the Sr isotope ratios of fracture fills should reflect the source groundwater from which the solid phases precipitated and (b) that U-series disequilibria (USD) enable the calculation of residence time for the U by using Fe oxides as the best candidate, an “isotopic toolbox” was applied to fracture fill from the crystalline basement of the Vienne district. The fracture fills are formed mainly of carbonates, clays and Fe oxides. The isotope data indicate two main generations of carbonate that originated from hydrothermal circulation and equilibrium with present-day groundwaters but the Sr isotope ratios highlight another component with a higher 87Sr/86Sr ratio reflecting the complexity of the water–rock interactions.For the USD, the Fe-hydroxides located at 207 m depth yield an age of 102 ± 5 ka (St. Germain I interglacial stage), whereas those located at 277 m and 300 m yield respective ages of 173 ± 15 ka and 181 ± 10 ka. These corresponding to the transition between the penultimate glacial period (isotopic stage 6) and the end of the preceding interglacial stage (isotopic sub-stage 7a). Investigating water–rock interaction (87Sr/86Sr, 18O, 13C, USD) in the fracture-fill minerals from the crystalline basement has shown that such an approach is relevant to developing an understanding of how the groundwater system has changed over time.  相似文献   

19.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

20.
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1–MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records.Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave’s catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. δ13C and δ18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7–0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. ‘Hendy tests’ indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号