首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   

2.
Small-volume pyroclastic density currents (PDCs) are generated frequently during explosive eruptions with little warning. Assessing their hazard requires a physical understanding of their transport and sedimentation processes which is best achieved by the testing of experimental and numerical models of geophysical mass flows against natural flows and/or deposits. To this end we report on one of the most detailed sedimentological studies ever carried out on a series of pristine small-volume PDC deposits from the 1975 eruption of Ngauruhoe volcano, whose emplacement were also witnessed during eruption. Using high-resolution GPS surveys, a series of lateral excavations across the deposits, and bulk sedimentological analysis we constrained the geomorphology, internal structure and texture of the deposits with respect to laterally varying modes of deposition.  相似文献   

3.
Pyroclastic density currents (PDCs) generated during the Plinian eruption of the Pomici di Avellino (PdA) of Somma–Vesuvius were investigated through field and laboratory studies, which allowed the detailed reconstruction of their eruptive and transportation dynamics and the calculation of key physical parameters of the currents. PDCs were generated during all the three phases that characterised the eruption, with eruptive dynamics driven by both magmatic and phreatomagmatic fragmentation. Flows generated during phases 1 and 2 (EU1 and EU3pf, magmatic fragmentation) have small dispersal areas and affected only part of the volcano slopes. Lithofacies analysis demonstrates that the flow-boundary zones were dominated by granular-flow regimes, which sometimes show transitions to traction regimes. PDCs generated during eruptive phase 3 (EU5, phreatomagmatic fragmentation) were the most voluminous and widespread in the whole of Somma–Vesuvius’ eruptive history, and affected a wide area around the volcano with deposit thicknesses of a few centimetres up to more than 25 km from source. Lithofacies analysis shows that the flow-boundary zones of EU5 PDCs were dominated by granular flows and traction regimes. Deposits of EU5 PDC show strong lithofacies variation northwards, from proximally thick, massive to stratified beds towards dominantly alternating beds of coarse and fine ash in distal reaches. The EU5 lithofacies also show strong lateral variability in proximal areas, passing from the western and northern to the eastern and southern volcano slopes, where the deposits are stacked beds of massive, accretionary lapilli-bearing fine ash. The sedimentological model developed for the PDCs of the PdA eruption explains these strong lithofacies variations in the light of the volcano’s morphology at the time of the eruption. In particular, the EU5 PDCs survived to pass over the break in slope between the volcano sides and the surrounding volcaniclastic apron–alluvial plain, with development of new flows from the previously suspended load. Pulses were developed within individual currents, leading to stepwise deposition on both the volcano slopes and the surrounding volcaniclastic apron and alluvial plain. Physical parameters including velocity, density and concentration profile with height were calculated for a flow of the phreatomagmatic phase of the eruption by applying a sedimentological method, and the values of the dynamic pressure were derived. Some hazard considerations are summarised on the assumption that, although not very probable, similar PDCs could develop during future eruptions of Somma–Vesuvius.  相似文献   

4.
During the past 22 ka of activity at Somma–Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma–Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma–Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.  相似文献   

5.
We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1–5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelée (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts. Editorial responsibility: T. Druitt  相似文献   

6.
The deposition temperature of the pyroclastic density current (PDC) deposits emplaced during the AD 472 Pollena eruption (Somma-Vesuvius, Italy) has been investigated using the thermal analysis of the magnetic remanence carried by lithic clasts embedded within the deposits. A total of 310 lithic clasts were collected from all the PDC units in the Pollena stratigraphic succession, at different distances from the inferred vent and at different stratigraphic levels. The temperature reached by each individual clast during residence in the PDC was estimated through stepwise thermal demagnetization, with the values from all clasts collected at each site being used to infer the deposition temperature (T dep). Although the sedimentological features of these PDC deposits show some variation, the deposition temperature typically falls in the range 300 to 320°C, with a maximum range of 260 to 360°C. The fairly uniform temperature observed in both the dune bedded and massive deposits points to homogeneity in attainment of T dep for the different deposits and suggests similarity in the depositional regime of the different PDCs and/or in heat transfer to lithic fragments. Similarity in depositional regime was also favoured by the limited control exerted by topography on the distribution of these PDCs, with the northern wall of the Somma caldera that did not act as a morphological barrier. As a result the currents were capable of moving away from the vent, without topographic disturbances and, thus, significant variations in the cooling regime. Because the Pollena eruption is considered similar to the maximum expected event at Somma-Vesuvius, the characteristics of its deposits best simulate the likely maximum hazard for the Vesuvius region. In this regard, Pollena produced hot, dilute PDCs which were able to travel up to 12 km from the vent maintaining high temperatures across this distance.  相似文献   

7.
We report the stratigraphic sequence of the 2005 eruption of Ilamatepec volcano together with sedimentological and chemical analyses of its products.Structural and textural characteristics of the deposits indicate that the eruption was driven by a small-volume rhyolitic intrusion at shallow levels, which resulted first in the collapse of the existing hydrothermally altered fan of previous deposits inside the crater lake, driving phreatic explosions with launching of blocks on ballistic trajectories; later the magma interacted with lake waters producing several hydromagmatic pyroclastic density currents (PDCs). These flows were energetic enough to knock down pine trees up to distances of 1.8 km from the crater in the E-NE sector of the volcano. Finally, ejection of ballistic blocks that landed on previously emplaced, wet pyroclastic density current deposits, caused the generation of a lahar that flowed down the steep eastern flank toward the El Jabillal gully. Subsequent lahars occurred as a result of intense rain caused by hurricane Stan.Radiocarbon ages on paleosols and charcoal fragments, separating previous volcanogenic sequences, indicate that similar eruptions have occurred more frequently in the past centuries, than previously thought.The new data confirms that Ilamatepec volcano is one of the most active volcanoes in El Salvador. Nevertheless, more detailed studies of the eruptive sequence of Ilamatepec volcano are mandatory to establish future eruptive patterns.  相似文献   

8.
Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5?×?6?×?2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5–3.5 in heated currents and 1.5–2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ~0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.  相似文献   

9.
An aeromechanic analysis of pyroclastic density currents (PDCs) past a building is carried out on the results of a computer simulation. The analysis shows that PDCs strongly interact with buildings, resulting in turbulent boundary layer separation and recirculation. These results could be used to better assess the hazard of PDCs impacting urban areas and be of service to civil protection authorities and urban planners who work in active volcanic areas.  相似文献   

10.
After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.  相似文献   

11.
Thermal remanent magnetization (TRM) analyses were carried out on lithic fragments from two different typologies of pyroclastic density current (PDC) deposits of the 1982 eruption of El Chichón volcano, in order to estimate their equilibrium temperature (Tdep) after deposition. The estimated Tdep range is 360–400 °C, which overlaps the direct measurements of temperature carried out four days after the eruption on the PDC deposits. This overlap demonstrates the reliability of the TRM method to estimate the Tdep of pyroclastic deposits and to approximate their depositional temperature. These results also constraint the time needed for reaching thermal equilibrium within four days for the studied PDC deposits, in agreement with predictions of theoretical models.  相似文献   

12.
In order to define the risk from explosive eruptions, one must constrain both the probability of explosive events and the effects, or consequences, of those events. This paper focuses on the effects of pyroclastic flows and surges (here termed ‘pyroclastic density currents', or PDCs) on buildings, infrastructure elements, and to some extent on vehicles. PDCs impart a lateral force to such structures in the form of dynamic pressure, which depends on the bulk density of the PDC (which in turn depends mainly on particle concentration) and its velocity. For reasonable ranges of particle concentration (10−3 to 0.5) and velocities (10 to 300 m/s), dynamic pressure on the upstream face of a structure ranges from 0.1 kPa to 104 kPa. Lateral loads ranging up to about 100 kPa were produced during nuclear weapons tests in the 1940s and 1950s that were designed to study the effects of such loading on a variety of structures for civil defense and emergency response purposes in the event of nuclear war. Although considerable simplifications are involved, the data from these weapon tests provide useful analog information for understanding the effects of PDCs. I reviewed data from the nuclear tests, describing the expected damage from different loadings. Tables are provided that define the response of different structural elements (e.g., windows, framing, walls) and whole structures to loading in probabilistic terms, which in principle account for variations in construction quality, orientation, and other factors. Finally, damage documented from historical eruptions at Mt. Lamington (1951), Herculaneum (AD 79 Vesuvius eruption), and St. Pierre (1902 Mt. Pelee eruption) is reviewed. Damage patterns, combined with estimates of velocity, provide an independent estimate of particle concentration in the PDCs. Details of structural damage should be recorded and mapped around future eruptions in order to help refine this aspect of consequence analysis. Another fruitful approach would be to combine numerical simulations of eruption scenarios, which can produce simulated maps of dynamic pressure, with GIS-based data on structures for a given region; the result would be predictions of consequences that could be used for planning and emergency response training.  相似文献   

13.
The 26.5 ka Oruanui eruption, from Taupo volcano in the central North Island of New Zealand, is the largest known ‘wet’ eruption, generating 430 km3 of fall deposits, 320 km3 of pyroclastic density–current (PDC) deposits (mostly ignimbrite) and 420 km3 of primary intracaldera material, equivalent to 530 km3 of magma. Erupted magma is >99% rhyolite and <1% relatively mafic compositions (52.3–63.3% SiO2). The latter vary in abundance at different stratigraphic levels from 0.1 to 4 wt%, defining three ‘spikes’ that are used to correlate fall and coeval PDC activity. The eruption is divided into 10 phases on the basis of nine mappable fall units and a tenth, poorly preserved but volumetrically dominant fall unit. Fall units 1–9 individually range from 0.8 to 85 km3 and unit 10, by subtraction, is 265 km3; all fall deposits are of wide (plinian) to extremely wide dispersal. Fall deposits show a wide range of depositional states, from dry to water saturated, reflecting varied pyroclast:water ratios. Multiple bedding and normal grading in the fall deposits show the first third of the eruption was very spasmodic; short-lived but intense bursts of activity were separated by time breaks from zero up to several weeks to months. PDC activity occurred throughout the eruption. Both dilute and concentrated currents are inferred to have been present from deposit characteristics, with the latter being volumetrically dominant (>90%). PDC deposits range from mm- to cm-thick ultra-thin veneers enclosed within fall material to >200 m-thick ignimbrite in proximal areas. The farthest travelled (90 km), most energetic PDCs (velocities >100 m s−1) occurred during phase 8, but the most voluminous PDC deposits were emplaced during phase 10. Grain size variations in the PDC deposits are complex, with changes seen vertically in thick, proximal accumulations being greater than those seen laterally from near-source to most-distal deposits. Modern Lake Taupo partly infills the caldera generated during this eruption; a 140 km2 structural collapse area is concealed beneath the lake, while the lake outline reflects coeval peripheral and volcano–tectonic collapse. Early eruption phases saw shifting vent positions; development of the caldera to its maximum extent (indicated by lithic lag breccias) occurred during phase 10. The Oruanui eruption shows many unusual features; its episodic nature, wide range of depositional conditions in fall deposits of very wide dispersal, and complex interplay of fall and PDC activity.  相似文献   

14.
The MW6.6 Arketao earthquake occurred on November 25, 2016 in Muji Basin of the Kongur extensional system in the eastern Pamir. The region is the Pamir tectonic knot, one of the two structural knots where the India plate collides with the Eurasian plate. This region is one of the most active areas in mainland China. The seismogenic structure of the earthquake is preliminarily determined as the Muji dextral-slip fault which locates in the north of Kongur extensional system. Based on field surveys of seismic geological hazard, and combined with the characteristics of high altitude area and the focal mechanism solution, this paper summarizes the associated distribution and development characteristics of sandy soil liquefaction, ground fissures, collapse, and landslide. There are 2 macroscopic epicenters of the earthquake, that is, Weirima village and Bulake village. There are a lot of geological hazards distributed in the macroscopic epicenters. Sand liquefaction is mainly distributed in the south of Kalaarte River, and area of sand liquefaction is 1 000m2. The liquefaction material gushed along the mouth of springs and ground fissures, because of the frozen soil below the surface. More than 60% of soil liquefactions are formed in the mouth of springs. According to the trenching, these liquefactions occurred in 1.8 meters underground in the gray green silty clay and silty sand layers. The ground fissures are mainly caused by brittle failure, and the deformation of upper frozen soil layer is caused by the deformation of lower soil layer. The ground fissures at Weirima village are distributed in a chessboard-like pattern in the flood plain of Kalaarte River. In the Bulake village, the main movement features of the ground fissure are tension and sinistral slip, and the directions of ground fissures are 90°~135°. The collapse and landslide are one of the important geological disasters in the disaster area. The rolling stones falling in landslide blocked the roads and smashed the wire rods, and the biggest rolling stone is 4 meters in length. We only found a small landslide in the earthquake area, but there are a large number of unstable slopes and potential landslides in the surroundings. The ground fissures associated with sand liquefaction are an important cause of serious damage to the buildings.  相似文献   

15.
Glacial Lake Benson formed in west-central Minnesota as the Des Moines lobe of the Laurentide ice sheet retreated north of a small moraine in the Minnesota River lowland. Although previous research has constrained the timing of glacial Lake Agassiz immediately to the north, little age control is available for the formation of glacial Lake Benson and ice-marginal positions to the south. In order to constrain the age of glacial Lake Benson and test the application of single-grain optically stimulated luminescence (OSL) dating to ice-marginal deposits, seven OSL samples were collected from a variety of depositional settings. These included deltaic deposits linked to specific lake levels, pro-glacial fluvial, ice-contact and supra-glacial deposits. Single-grain OSL results indicate evidence for incomplete resetting (partial bleaching) of the luminescence signal, as expected for glacial environments, and therefore ages were calculated using a minimum age model. OSL results constrain the timing of ice-margin retreat and lake formation to 14.4–14.8 ka. Analysis of single-grain equivalent dose distributions indicates that deposits created by glacial-dominated processes typically had higher over-dispersion (>50%) and greater positive skew (>0.9) than deposits originating from fluvial processes. These results suggest that water-lain deposits should be targeted for OSL sampling over those created by glacial processes when dating ice-proximal settings.  相似文献   

16.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.  相似文献   

17.
Long-term multi-hazard assessment for El Misti volcano (Peru)   总被引:1,自引:1,他引:0  
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.  相似文献   

18.
On 29–30 November 2006, heavy rains from Supertyphoon Durian remobilized volcanic debris on the southern and eastern slopes of Mount Mayon, generating major lahars that caused severe loss of life and property in downstream communities. The nearby Legaspi City weather station recorded 495.8 mm of rainfall over 1.5 days at rates as high as 47.5 mm/h, far exceeding the initiation threshold for Mayon lahars. For about 18 h, floods and lahars from the intense and prolonged rainfall overtopped river bends, breaching six dikes through which they created new paths, buried downstream communities in thick, widespread deposits, and caused most of the 1,266 fatalities. In order to mitigate damage from future lahars, the deposits were described and analyzed for clues to their generation and impact on structures and people. Post-disaster maps were generated from raw ASTER and SPOT images, using automated density slicing to characterize lahar deposits, flooded areas, croplands, and urbanized areas. Fieldwork was undertaken to check the accuracy of the maps, especially at the edges of the lahar deposits, and to measure the deposit thicknesses. The Durian event was exceptional in terms of rainfall intensity, but the dikes eventually failed because they were designed and built according to flood specifications, not to withstand major lahars.  相似文献   

19.
Proximal (<3 km) deposits from episodes II and III of the 60-h-long Novarupta 1912 eruption exhibit a very complex stratigraphy, the result of at least four transport regimes and diverse depositional mechanisms. They contrast with the relatively simple stratigraphy (and inferred emplacement mechanisms) for the previously documented, better known, medial–distal fall deposits and the Valley of Ten Thousand Smokes ignimbrite. The proximal products include alternations and mixtures of both locally and regionally dispersed fall ejecta, and numerous thin complex deposits of pyroclastic density currents (PDCs) with no regional analogs. The locally dispersed component of the fall deposits forms sector-confined wedges of material whose thicknesses halve radially from and concentrically about the vent over distances of 100–300 m (cf. several kilometers for the medial–distal fall deposits). This locally dispersed fall material (and many of the associated PDC deposits) is rich in andesitic and banded pumices and richer in shallow-derived wall-rock lithics in comparison with the coeval medial fall units of almost entirely dacitic composition. There are no marked contrasts in grain size in the near-vent deposits, however, between locally and widely dispersed beds, and all samples of the proximal fall deposits plot as a simple continuation of grain size trends for medial–distal samples. Associated PDC deposits form a spectrum of facies from fines-poor, avalanched beds through thin-bedded, landscape-mantling beds to channelized lobes of pumice-block-rich ignimbrite. The origins of the Novarupta near-vent deposits are considered within a spectrum of four transport regimes: (1) sustained buoyant plume, (2) fountaining with co-current flow, (3) fountaining with counter-current flow, and (4) direct lateral ejection. The Novarupta deposits suggest a model where buoyant, stable, regime-1 plumes characterized most of episodes II and III, but were accompanied by transient and variable partitioning of clasts into the other three regimes. Only one short period of vent blockage and cessation of the Plinian plume occurred, separating episodes II and III, which was followed by a single PDC interpreted as an overpressured "blast" involving direct lateral ejection. In contrast, regimes 2 and 3 were reflected by spasmodic sedimentation from the margins of the jet and perhaps lower plume, which were being strongly affected by short-lived instabilities. These instabilities in turn are inferred to be associated with heterogeneities in the mixture of gas and pyroclasts emerging from the vent. Of the parameters that control explosive eruptive behavior, only such sudden and asymmetrical changes in the particle concentration could operate on time scales sufficiently short to explain the rapid changes in the proximal 1912 products.Editorial responsibility: R. Cioni  相似文献   

20.
The edifice of Stromboli volcano gravitationally collapsed several times during its volcanic history (>100 ka–present). The largest Holocene event occurred during the final stage of the Neostromboli activity (∼13–5 ka), and was accompanied by the emplacement of phreatomagmatic and lahar deposits, known as the Secche di Lazzaro succession. A stratigraphic and paleomagnetic study of the Secche di Lazzaro deposits allows the interpretation of the emplacement and the eruptive processes. We identify three main units within the succession that correspond to changing eruption conditions. The lower unit (UA) consists of accretionary lapilli-rich, thinly bedded, parallel- to cross-stratified ash deposits, interpreted to indicate the early stages of the eruption and emplacement of dilute pyroclastic density currents. Upward, the second unit (UB) of the deposit is more massive and the beds thicker, indicating an increase in the sedimentation rate from pyroclastic density currents. The upper unit (UC) caps the succession with thick, immediately post-eruptive lahars, which reworked ash deposited on the volcano’s slope. Flow directions obtained by Anisotropy of Magnetic Susceptibility (AMS) analysis of the basal bed of UA at the type locality suggest a provenance of pyroclastic currents from the sea. This is interpreted to be related to the initial base-surges associated with water–magma interaction that occurred immediately after the lateral collapse, which wrapped around the shoulder of the sector collapse scar. Upward in the stratigraphy (upper beds of UA and UB) paleoflow directions change and show a provenance from the summit vent, probably related to the multiple collapses of a vertical, pulsatory eruptive column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号