首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of Rh, Au and other highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd and Au), and 187Os/188Os isotope ratios have been determined for samples from peridotite massifs and xenoliths in order to further constrain HSE abundances in the Earth's mantle and to place constraints on the distributions processes accounting for observed HSE variations between fertile and depleted mantle lithologies. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS. The monoisotopic elements Rh and Au were quantified by standardization relative to the concentrations of Ru and Ir, respectively, and were determined from the same digestion aliquot as other HSE. The measurement precision of the concentration data under intermediate precision conditions, as inferred from repeated analyses of 2 g test portions of powdered samples, is estimated to be better than 10% for Rh and better than 15% for Au (1 s).Fertile lherzolites display non-systematic variation of Rh concentrations and constant Rh/Ir of 0.34 ± 0.03 (1 s, n = 57), indicating a Rh abundance for the primitive mantle of 1.2 ± 0.2 ng/g. The data also suggest that Rh behaves as a compatible element during low to moderate degrees of partial melting in the mantle or melt–mantle interaction, but may be depleted at higher degrees of melting. In contrast, Au concentrations and Au/Ir correlate with peridotite fertility, indicating incompatible behaviour of Au during magmatic processes in the mantle. Fertile lherzolites display Au/Ir ranging from 0.20 to 0.65, whereas residual harzburgites have Au/Ir < 0.20. Concentrations of Au and Re are correlated with each other and suggest similar compatibility of both elements. The primitive mantle abundance of Au calculated from correlations displayed by Au/Ir with Al2O3 and Au with Re is 1.7 ± 0.5 ng/g (1 s).The depletion of Pt, Pd, Re and Au relative to Os, Ir, Ru and Rh displayed by residual harzburgites, suggests HSE fractionation during partial melting. However, the HSE abundance variations of fertile and depleted peridotites cannot be explained by a simple fractionation process. Correlations displayed by Pd/Ir, Re/Ir and Au/Ir with Al2O3 may reflect refertilization of previously melt depleted mantle rocks due to reactive infiltration of silicate melts.Relative concentrations of Rh and Au inferred for the primitive mantle model composition are similar to values of ordinary and enstatite chondrites, but distinct from carbonaceous chondrites. The HSE pattern of the primitive mantle is inconsistent with compositions of known chondrite groups. The primitive mantle composition may be explained by late accretion of a mixture of chondritic with slightly suprachondritic materials, or alternatively, by meteoritic materials mixed into mantle with a HSE signature inherited from core formation.  相似文献   

2.
Experimental studies, performed under oxidized conditions (fO2 > QFM + 2, where QFM is quartz–fayalite–magnetite oxygen buffer), have shown that Rh, Ru, Ir and Os are strongly compatible with Cr spinel, whereas empirical studies of Cr spinels from ultramafic–mafic rocks suggest that the experimental results may overestimate the partition coefficients. We report laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of platinum-group elements (PGE), Au and Re abundances in Cr spinels from the Ambae volcano, Vanuatu (fO2 = QFM + 2.5), the Jimberlana layered intrusion, western Australia, and the Bushveld complex, South Africa (fO2  QFM). The results show that Rh and IPGEs (Iridium-group PGE; Ru, Ir, Os) partition strongly into the Cr spinels that crystallized from the oxidized Ambae lavas whereas most of the Cr spinels from the more reduced Jimberlana layered intrusion and the Bushveld complex contain no detectable PGE, Au or Re, with exception of ~10 ppb of Ir in some Jimberlana Cr spinels. In the Ambae Cr spinels, Rh, Ru and, to lesser extent Os, are positively correlated with Fe3+, Ni and V. The homogeneous distribution of Rh and IPGEs in LA-ICP-MS time-resolved spectra indicates that these elements are in solid solution in Cr spinels. Pt–Fe alloys occur as inclusions within the Ambae Cr spinels, which indicate that the Ambae melt was saturated with Pt.Our results show that partitioning of Rh, Ru and Ir into Cr spinels increases with increasing oxygen fugacity, which suggests that the high concentrations of these elements in the Ambae Cr spinels are due to the high oxygen fugacity of the host magma. Therefore, Cr spinels may play an important role in controlling the concentrations of Rh and IPGEs during fractional crystallization of oxidized ultramafic–mafic magmas and during partial melting of oxidized arc mantle.  相似文献   

3.
The fresh and weathered garnet amphibolites, from the Akom II area in the Archaean Congo Craton, were investigated to determine the S, Cu, Ni, Cr, and Au-PGE values. The garnet amphibolites are composed of amphibole, plagioclase, garnet, quartz, and accessory apatite, spinel, sericite, pyrite, chalcopyrite and non-identified opaque minerals. The presence of apatite, sericite, and two generations of opaque minerals suggests that they might be affected by hydrothermal alteration. They are characterized by moderate Al2O3, Fe2O3, CaO, V, Zn, and Co contents with negative Eu- and Ce-anomalies. The sulfur concentrations are variable (380–1710 ppm). According to the sulfur contents, amphibolites can be grouped into two: amphibolites with low contents, ranging between 380 and 520 ppm (av. = 457 ppm); and amphibolites with elevated contents, varying from 1140 to 1710 ppm (av. = 1370 ppm). Amphibolites contain contrast amounts of Cu (∼ 1800 to 5350 ppm) while nickel contents attain 121 ppm. Chromium contents vary from 43 to 194 ppm. Sulfur correlates positively with Cu and Cr, but negatively with Ni and Ni/Cr ratio. The total Au-PGE contents attain 59 ppb.The presence of amphibole and feldspars confirms the low degree of amphibolite weathering. The secondary minerals are constituted of kaolinite, gibbsite, goethite and hematite. Despite the accumulation of some elements, the major and trace element distribution is quite similar to that of fresh amphibolites. Nevertheless, the weathering processes lead to the depletion of several elements such as S (239–902 ppm), Cu (520–2082 ppm), and Ni (20–114 ppm). Chromium and Au-PGE show an opposite trend marked by a slight enrichment in the weathered amphibolites. Amidst the Au-PGE, Pd (60 ppb) and Pt (23 ppb) have elevated contents in the fresh rocks as well as in the weathered materials. The PPGE contents are much higher than IPGE contents in both types of materials. The Pd/Pt, Pd/Rh, Pd/Ru, Pd/Ir, Pd/Os, and Pd/Au values indicate that Pt, Rh, Ru, Ir, Os and Au are more mobile than Pd. Chondrite-normalized base metal patterns confirm the abundance of Pd and the slight enrichment of Au-PGE in weathered rocks. Palladium, Rh and Ir are positively correlated with S. Conversely Pt and Ru are negatively correlated with S and Au is not correlated with S. Despite the high and variable S and Cu contents, the garnet amphibolites possess low Au-PGE and other base metals contents.  相似文献   

4.
The geological and metallogenic history of the Singhbhum Craton of eastern India is marked by several episodes of volcanism, plutonism, sedimentation and mineralization spanning from Paleoarchean to Mesoproterozoic in a dynamic tectonic milieu. Distinct signatures of this Archean-Proterozoic geodynamic process are preserved in discrete crustal provinces that constitute the Singhbhum Craton. Here we report new major, trace and PGE geochemical data from the ~ 3.4 Ga Iron Ore Group (IOG) volcanic rocks of the Jamda-Koira basin, a part of the BIF-bearing volcano-sedimentary sequences of the Noamundi-Jamda-Koira iron ore basin in the western part of Singhbhum Granite (SBG), and ~ 2.25 Ga metavolcanic rocks of Malangtoli. The IOG and Malangtoli volcanic rocks are porphyritic basalts and despite belonging to different ages, they exhibit similar mineralogical composition marked by clinopyroxene, plagioclase (present as both phenocryst and groundmass), opaques and volcanic glass (restricted to groundmass). The igneous mineralogy of these rocks has been overprinted by greenschist to lower amphibolite grade of metamorphism. The Malangtoli samples show low and high MgO compositional varieties. Immobile trace element compositions classify the IOG samples as andesite having a calc-alkaline composition, whereas the Malangtoli rocks correspond to basalt and andesite displaying a tholeiitic to calc-alkaline trend. The IOG basalts show low to moderate PGE contents marked by 26.23–68.35 ppb of ΣPGE, whereas the Malangtoli basalts display a moderate to high concentration of PGE (ΣPGE = 43.01–190.43 ppb). The studied samples have relatively enriched ΣPPGE ranging from 24.1–63.3 ppb (IOG) and 34–227.3 ppb (Malangtoli) against 2.2–4.1 ppb and 1.9–8.9 ppb ΣIPGE contents respectively. PPGE/IPGE ratios for IOG and Malangtoli samples range from 7.7–17.6 and 4.8–59.9. HFSE, REE and PGE compositions suggest a low degree (< 1 to 1%) of partial melting in the garnet lherzolite domain for the generation of IOG volcanic rocks. The parental magma of the Malangtoli basalts were generated by lower to higher degrees (3–< 10%) of mantle melting at depths corresponding to spinel to garnet lherzolite regime. Trace element (Zr/Nb, Th/Ta, Th/Nb, Ni/Cu) and PGE (Pd/Ir, Pd/Pt, Cu/Pd, Ni/Pd, Cu/Ir) ratios corroborate a sulphide saturated and PGE depleted character of IOG volcanic rocks that underwent crustal assimilation. In contrast, the high MgO Malangtoli basalts exhibit sulphide undersaturated, PGE undepleted nature devoid of crustal contamination whereas the low MgO Malangtoli basalts are sulphide saturated, PGE depleted and crustally contaminated. The IOG volcanic rocks correspond to intraoceanic arc with polygenetic crustal signatures, and show affinity towards arc-generated calc-alkaline basalts. The low- and high MgO basalts of Malangtoli are affiliated to transitional arc to rift-controlled back arc tectonic setting in a basinal environment that developed proximal to an active convergent margin.  相似文献   

5.
The Bilong Co oil shale zone is located in the South Qiangtang depression. This zone, together with the Shengli River-Changshe Mountain oil shale zone in the North Qiangtang depression, northern Tibet plateau, represents the potentially largest marine oil shale resource in China. Seventeen samples including oil shale and micritic limestone were collected from the Bilong Co oil shale area to determine the concentrations, distribution patterns, occurrences and origins of platinum group elements (PGEs) in marine oil shale. The oil shale samples from the Bilong Co area exhibit very low total PGE contents ranging from 1.04 to 2.96 ng/g with a weighted mean value of 1.686 ng/g, while the micritic limestone samples from the Bilong Co area exhibit a little lower PGE value ranging from 0.413 to 1.11 ng/g. PGEs in oil shale samples are characterized by high contents in Pd (average 0.79 ng/g), Os (average 0.123 ng/g) and Pt (average 0.644 ng/g) compared with Ru (average 0.068 ng/g), Rh (average 0.033 ng/g) and Ir (average 0.026 ng/g). The highest values for individual PGEs are not uniformly distributed in the section. Clearly, the PGEs are generally enriched in the oil shale samples near the boundary between micritic limestone and oil shale.The individual PGEs in oil shale samples from the Bilong Co area exhibit various modes of occurrence. Ruthenium and Pt occur mainly in pyrite, while Pd is associated mainly with organic matter and Mg-minerals. Rhodium and Os are controlled mainly by pyrite and organic matter. Iridium is present mainly in other Fe-bearing minerals, rather than pyrite. The PGEs in the Bilong Co oil shale are mainly of seawater origin and possibly influenced by terrigenous supply.  相似文献   

6.
Total organic carbon content (TOC), trace element and platinum-group element (PGE) concentrations were determined in the black shales of the Lower Cambrian Niutitang Formation in the Nayong area, Guizhou Province, South China, in order to study the polymetallic Ni–Mo–PGE mineralization. The results demonstrate that numerous elements are enriched in the polymetallic ores compared to those of the nearby black shale, particularly Ni, Mo, Zn, TOC and total PGE, which can reach up to 7.03 wt.%, 8.49 wt.%, 11.7 wt.%, 11.5 wt.% and 943 ppb, respectively. The elemental enrichment distribution patterns are similar to those in the Zunyi and Zhangjiajie areas except that the Nayong location is exceptionally enriched in Zn. Whereas positive correlations are observed between the ore elements of the polymetallic ores, no such correlations are observed in the black shale. These positively correlated metallic elements are classified into three groups: Co–Ni–Cu–PGE, Zn–Cd–Pb and Mo–Tl–TOC. The geological and geochemical features of these elements suggest that Proterozoic and Early Palaeozoic mafic and ultramafic rocks, dolomites and/or Pb–Zn deposits of the Neoproterozoic Dengying Formation and seawater could be the principal sources for Co–Ni–Cu–PGE, Zn–Cd–Pb, and Mo–Tl–TOC, respectively. Furthermore, the chondrite-normalized patterns of PGEs with Pd/Pt, Pd/Ir and Pt/Ir indicate that PGE enrichment of the polymetallic ores is most likely related to hydrothermal processes associated with the mafic rocks. In contrast, PGE enrichment in the black shale resembles that of the marine oil shale with terrigenous and seawater contributions. Our investigations of TOC, trace elements and PGE geochemistry suggest that multiple sources along with submarine hydrothermal and biological contributions might be responsible for the formation of the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation across southern China.  相似文献   

7.
The Kapalagulu layered ultramafic and mafic intrusion is emplaced between the Paleoproterozoic Ubendian basement and overlying Neoproterozoic Itiaso Group metasedimentary rocks, located near the western shore of Lake Tanganyika. High-grade platinum group element (PGE) mineralization (1–6 g/t Pt + Pd + Au) is associated with chromitite and sulfide-bearing harzburgite within the southeastern extension of the intrusion, known as the Lubalisi Zone, which is covered by a layer of nickel-rich (0.2–2%Ni) laterite regolith that contains linear areas of PGE mineralization.In the Lubalisi Zone, the mineralization may be divided into several significant geometallurgical domains: (a) high-grade PGE mineralization (1–6 g/t Pt + Pd + Au) associated with stratiform PGE reefs and chromitite seams within a harzburgite unit; (b) high-grade PGE mineralization (up to 12 g/t Pt + Pd + Au) associated with small bodies and veins of nickel massive sulfide within harzburgite below PGE-bearing reefs and chromitite seams; (c) low-grade PGE mineralization (0.1–0.5 g/t Pt + Pd + Au) associated with a sulfide-mineralized harzburgite unit above the PGE-bearing reefs; (d) laterite style residual PGE mineralization (0.2–4 g/t Pt + Pd + Au) associated with chromite concentrations in the saprolite and overlying red clay horizons of the laterite regolith; and (e) supergene Ni associated with the saprock and overlying saprolite clay.Mineralogical study of three samples from the PGE reef consisting of high grade PGE chromitite and harzburgite indicate that this mineralization will give a good metallurgical response to conventional grinding and floatation due to the relatively coarse-grained nature of the PGM (P80 from ∼37 to 52 µm), association with base metal sulfides, and unaltered gangue minerals (Wilhelmij and Cabri, 2016). In contrast, mineralogical and metallurgical study of the Ni and PGE mineralized laterite indicate that it cannot be processed using conventional mineral processing techniques but that a hydrometallurgical route should be used to recover the base and precious metals. Because any process is very much deposit-controlled, significant metallurgical and geometallurgical testing of mineralized samples, as well as pilot plant testing, will be required to arrive at feasibility studies.  相似文献   

8.
The Abdasht complex is a major ultramafic complex in south-east Iran (Esfandagheh area). It is composed mainly of dunite, harzburgite, podiform chromitites, and subordinate lherzolite and wehrlite. The podiform chromitites display massive, disseminated, banded and nodular textures. Chromian spinels in massive chromitites exhibit a uniform and restricted composition and are characterized by Cr# [= Cr / (Cr + Al)] ranging from 0.76 to 0.77, Mg# [= Mg/(Mg + Fe2 +)] from 0.63 to 0.65 and TiO2 < 0.2 wt.%. These values may reflect crystallization of the chromian spinels from boninitic magmas. Chromian spinels in peridotites exhibit a wide range of Cr# from 0.48 to 0.86, Mg# from 0.26 to 0.56 and very low TiO2 contents (averaging 0.07 wt.%). The Fe3 +# is very low, (< 0.08 wt.%) in the chromian spinel of chromitites and peridotites of the Abdasht complex which reflects crystallization under low oxygen fugacities.The distribution of platinum group elements (PGE) in Abdasht chromitites displays a high (Os + Ir + Ru)/(Rh + Pt + Pd) ratio with strongly fractionated chondrite-normalized PGE patterns typical of ophiolitic chromitites. Moreover, the Pd/Ir value, which is an indicator of PGE fractionation, is very low (< 0.1) in the chromitites.The harzburgite, dunite and lherzolite samples are highly depleted in PGE contents relative to chondrites. The PdN/IrN ratios in dunites are unfractionated, averaging 0.72, whereas the harzburgites and lherzolites show slightly positive slopes PGE spidergrams, together with a small positive Ru anomaly, and their PdN/IrN ratio averages 2.4 and 2.3 respectively. Moreover, the PGE chondrite and primitive mantle normalized patterns of harzburgite, dunite and lherzolite are relatively flat which are comparable to the highly depleted mantle peridotites.The mineral chemistry data and PGE geochemistry indicate that the Abdasht chromitites and peridotites were generated from a melt with boninitic affinity under low oxygen fugacity in a supra-subduction zone setting. The composition of calculated parental melts of the Abdasht chromitites is consistent with the differentiation of arc-related magmas.  相似文献   

9.
In-situ laser ablation ICP-MS analyses on iron oxides in itabirite and iron ore from the Quadrilátero Ferrífero (Brazil) reveal a wide range in trace element abundances (e.g., average concentrations in hematite: Al = 40–2200 ppm, Mg = 1–930 ppm, Mn = 5–540 ppm, Ti = 3–500 ppm, V = 2–390 ppm, Cr = 1–98 ppm, As = 0.5–60 ppm). The chemistry of early hematite stages is mostly inherited from host rock and precursor magnetite, e.g., Mn concentrations correlate with bulk Mn content in itabirite. With progressive iron ore formation and modification, external fluids play a more prominent role. This is reflected by REE-Y switching from seawater-like Y/Ho ratios (> 44) in early-, to more chondrite-like Y/Ho ratios (< 34), in late-hematite stages, likely due to fluid–rock reactions with country rocks (e.g., phyllites) or exchange with magmatic hydrothermal fluids.The following ore formation stages and key processes, supported by mineral scale mass balance calculations, are constrained: (1) martitisation, cogenetic with gangue leaching, is driven by large volumes of oxidising, Si-undersaturated fluids resulting in an absolute depletion of Mg, Mn, Al, Ti, Ni and Zn, and enrichment of Pb, As, LREE and Y; (2) the formation of granoblastic hematite and locally microplaty hematite represents a largely isochemical recrystallisation of magnetite and/or martite accompanied by a depletion of Mg and Y and an elevated Ti mobility at the mineral scale; and (3) precipitation of schistose and vein-hosted specular hematite along shear and fracture zones is driven by an external Fe–Si-rich hydrothermal fluid likely under high fluid/rock ratios.  相似文献   

10.
Nickel-, copper-, and platinum group element (PGE)-enriched sulphide mineralization in large igneous provinces has attracted numerous PGE studies. However, the distribution and behavior of PGEs as well as the history of sulphide saturation are less clear in oxide-dominated mineralization. Platinum group elements of oxide-bearing layered mafic intrusions from the Emeishan large igneous province are examined in this study. Samples collected from the Baima and Taihe oxide-bearing layered gabbroic intrusions reveal contrasting results. The samples from Baima gabbroic rocks have low total PGE abundances (ΣPGE < 4 ppb) whereas the Taihe gabbroic rocks, on average, have more than double the concentration but are variable ranging from ΣPGE < 2 ppb to ΣPGE ∼300 ppb. The Baima gabbro is platinum-subgroup PGE (PPGE = Rh, Pt and Pd) enriched and iridium-subgroup PGE (IPGE = Os, Ir and Ru) depleted, with a distinct positive Ru anomaly on a primitive mantle normalized multi-element plot. The Taihe gabbros are also PPGE enriched but with negative Ru and Pd anomalies on a primitive mantle normalized multi-element plot. The PGE concentrations of Baima rocks are indicative of fractionation of a relatively evolved, mafic, S-undersaturated parental magma that was affected by earlier sulphide segregation. In contrast, the Taihe rocks record evidence of both S-saturated and S-undersaturated conditions and that the parental magma was likely emplaced very close to S-saturation. Comparisons of the platinum group element contents in the Emeishan flood basalts and the Emeishan oxide-bearing intrusions suggest that the PGE budget in a magma is not controlled by magma series (high-Ti vs. low-Ti), but very much by crustal contamination. The unlikelihood of substantial crustal contamination in the Taihe magma allowed the magma to remain S-undersaturated for a longer duration. PGE and sulphide mineralization was not identified in the Taihe intrusion but the presence of one PGE-enriched sample (Pt + Pd = ∼300 ppb) suggests that the parental magma likely did not experience sulphide segregation and is a potential target for further prospecting.  相似文献   

11.
The Early Cambrian black shale sequence of the Niutitang Formation in South China hosts a synsedimentary, organic carbon-rich, polymetallic sulfide layer with extreme metal concentrations, locally mined as polymetallic Ni–Mo–PGE–Au ore. In combination with previously reported data, we present Mo isotope, platinum-group element (PGE), and trace and rare-earth element (REE) data for the polymetallic sulfide ores and host black shales from four mine sites (Dazhuliushui and Maluhe in Guizhou Province, and Sancha and Cili in Hunan Province, respectively), several hundred kilometers apart. The polymetallic sulfide ores have consistently heavy δ98/95Mo values of 0.94 to 1.38‰ (avg. 1.13 ± 0.14‰, 1σ, n = 11), and the host black shale and phosphorite have slightly more variable δ98/95Mo values of 0.81‰ to 1.70‰ (n = 14). This latter variation is due to variable paleoenvironmental conditions from suboxic to euxinic, and partly closed-system fractionation in isolated marine sedimentary basins. Both the polymetallic sulfides and host black shales show PGE distribution patterns similar to that of present-day seawater, but different from those of ancient submarine-hydrothermal deposits and modern submarine hydrothermal fluids. The polymetallic sulfide bed has a generally consistent metal enrichment by a factor of 107 compared to present-day seawater. PAAS-normalized REE + Y patterns of the polymetallic sulfide bed are characterized by a remarkably positive Y anomaly, consistent with an origin of the REE predominantly from seawater. Small positive Eu anomalies in some of the sulfide ores could reflect minor hydrothermal components involved. The Mo isotope, PGE, and trace and rare-earth element geochemical data suggest that metals in the polymetallic Ni–Mo–PGE–Au sulfide ore layer were scavenged mostly from Early Cambrian seawater, by both in-situ precipitation and local re-deposition of sulfide clasts.  相似文献   

12.
We present nomenclature and geochemical classification of Paleoproterozoic LILE-enriched high-Mg low-Ti mafic-granitoid rocks of the eastern margin of the Sarmatia paleocontinent and substantiate their tectonic position. Two differentiated rock series are recognized: (1) biotite-orthopyroxene melanorite-quartz-meladiorite-melagranodiorite and (2) hornblende-biotite quartz-diorite-tonalite-granodiorite. Both series correspond in chemical composition to calc-alkalic gabbro-diorites, diorites, tonalites, and granodiorites. As follows from their mineralogical and geochemical compositions, these are norite-diorite rocks (intrusive analogs of boninites) (SiO2 = 52-65 wt.%, MgO = 5-20 wt.%, TiO2 = 0.2-0.8 wt.%) and high-Mg granitoids (SiO2 = 60-70 wt.%, Na2O/K2O = 0.65-1.33, MgO = 3.23-7.40 wt.%, K2O = 1.9-4.0 wt.%), respectively. Their high Mg# values (67-87) and Cr contents (> 100 ppm), on the one hand, and their isotope-geochemical characteristics similar to those of the host metaterrigenous rocks, the magma enrichment in LILE, and the presence of Ni sulfide ores with a predominance of light sulfur isotopes, on the other, testify to crustal contamination of mantle magmas. The rock series are nearly of the same age and belong to the same magmatic system, where high-Mg granitoids are differentiates of parental high-Mg (boninite-like) norite-dioritic magma. This is confirmed by a gradual increase in SiO2 and K2O contents and a decrease in Mg# and Ni, Co, V, and Cr contents in the sequence from norites to granodiorites and by the facies and phase relationships between the series. Intrusion of rocks took place at shallow depths following the low-temperature metamorphism and folding under postcollisional collapse of the East Sarmatian orogen.  相似文献   

13.
Eucrites are basaltic meteorites that cooled rapidly but are in many instances thermally metamorphosed and impact brecciated. The exact timing of these events remains unclear. In this study, Ni isotopic compositions and Fe/Ni elemental ratios are presented for two non-cumulate eucrites, Bouvante and Juvinas, including mineral separates from the latter. The samples are characterized by variable, well-resolved 60Ni-excesses consistent with the former presence of live 60Fe (t1/2 = 2.62 Ma) at the time of eucrite crystallization. A significant fraction of Ni with a terrestrial-like composition appears to be surface correlated. This Ni may be the product of terrestrial contamination or was introduced by a chondritic impactor during brecciation. Altogether, the data provide evidence for a complex and probably multi-stage history of Fe and/or Ni redistribution, which impedes the interpretation of the chronological data.  相似文献   

14.
The Tuwu porphyry Cu deposit in the eastern Tianshan Orogenic Belt of southern Central Oceanic Orogen Belt contains 557 Mt ores at an average grade of 0.58 wt.% Cu and 0.2 g/t Au, being the largest porphyry Cu deposit in NW China. The deposit is genetically related to dioritic and plagiogranitic porphyries that intruded the Carboniferous Qieshan Group. Ore minerals are dominantly chalcopyrite, pyrite and enargite. Porphyric diorites have Sr/Y and La/YbN ratios lower but Y and Yb contents higher than plagiogranites. Diorites have highly variable Cu but nearly constant PGE contents (most Pd = 0.50–1.98 ppb) with Cu/Pd ratios ranging from 10,900 to 8,900,000. Plagiogranites have PGEs that are positively correlated with Cu and have nearly uniform Cu/Pd ratios (5,100,000 to 7,800,000). Diorites have concentrations of Re (0.73–15.18 ppb), and 187Re/188Os and 187Os/188Os ratios lower but common Os contents (0.006–0.097 ppb) higher than plagiogranites. However, both the diorites and plagiogranites have similar normalized patterns of rare earth elements (REE), trace element and platinum-group elements (PGEs). All the samples are characterized by the enrichments of LREE relative to HREE and display positive anomalies of Pb and Sr but negative anomalies of Nb and Ta in primitive-mantle normalized patterns. In the primitive mantle-normalized siderophile element diagrams, they are similarly depleted in all PGEs but slightly enriched in Au relative to Cu.Our new dataset suggests that both the diorite and plagiogranite porphyries were likely evolved from magmas derived from partial melting of a wet mantle wedge. Their parental magmas may have had different water contents and redox states, possibly due to different retaining time in staging magma chambers at the depth, and thus different histories of magma differentiation. Parental magmas of the diorite porphyries are relatively reduced with less water contents so that they have experienced sulfide saturation before fractional crystallization of silicate minerals, whereas the relatively more oxidized parental magmas with higher water contents of the plagiogranite porphyries did not reach sulfide saturation until the magmatic-hydrothermal stage. Our PGE data also indicates that the Cu mineralization in the Tuwu deposit involved an early stage with the enrichments of Au, Mo and Re and a late stage with the enrichment of As but depletion of Au–Mo. After the formation of the Cu mineralization, meteoric water heated by magmas penetrated into and interacted with porphyritic rocks at Tuwu, which was responsible for leaching Re from hosting rocks.  相似文献   

15.
Geogenic nickel (Ni), vanadium (V) and chromium (Cr) are present at elevated levels in soils in Northern Ireland. Whilst Ni, V and Cr total soil concentrations share common geological origins, their respective levels of oral bioaccessibility are influenced by different soil-geochemical factors. Oral bioaccessibility extractions were carried out on 145 soil samples overlying 9 different bedrock types to measure the bioaccessible portions of Ni, V and Cr. Principal component analysis identified two components (PC1 and PC2) accounting for 69% of variance across 13 variables from the Northern Ireland Tellus Survey geochemical data. PC1 was associated with underlying basalt bedrock, higher bioaccessible Cr concentrations and lower Ni bioaccessibility. PC2 was associated with regional variance in soil chemistry and hosted factors accounting for higher Ni and V bioaccessibility. Eight percent of total V was solubilised by gastric extraction on average across the study area. High median proportions of bioaccessible Ni were observed in soils overlying sedimentary rock types. Whilst Cr bioaccessible fractions were low (max = 5.4%), the highest measured bioaccessible Cr concentration reached 10.0 mg kg−1, explained by factors linked to PC1 including high total Cr concentrations in soils overlying basalt bedrock.  相似文献   

16.
The Huangshannan Ni–Cu sulfide deposit at the southern margin of the Central Asian Orogenic Belt (CAOB) is an important recent discovery in the Eastern Tianshan Region, Northwestern China. The Huangshannan Intrusion is composed of mafic and ultramafic rocks, and its websterite and lherzolite sequences host the sulfide orebodies. Olivine is the dominant mineral in the Huangshannan Intrusion, occurring as olivine inclusions hosted by pyroxene oikocrysts, as olivine crystals in magmatic sulfides, and as poikilitic crystals in the lherzolite. Small olivine inclusions always coexist with large poikilitic olivine crystals in the same sample, resulting in a heterogeneous texture on the scale of the oikocrysts. The Ni abundance ranges from 1540 to 3772 ppm in poikilitic olivine grains, from 2114 to 3740 ppm in olivine grains hosted by sulfide minerals, and from 2043 to 4023 ppm in olivine inclusions hosted by pyroxene oikocrysts. For the three types of olivine, the ranges in forsterite (Fo) content are 78.97–84.92 mol.%, 81.57–84.79 mol.%, and 80.33–84.68 mol.%, respectively. The Ni content of olivine in the lherzolite is anomalously high relative to the range found in most within plate olivine-bearing mafic-ultramafic rocks. The composition of olivine is controlled mainly by that of the parental magma, fractional crystallization and reactions with interstitial silicate and sulfide melts. Both fractional crystallization and reaction with interstitial silicate may cause a decrease in the Ni content of olivine. The possibility that Ni–Fe exchange causes the anomalously high Ni contents in olivine can be excluded because the olivine grains contained in sulfide have similar or lower Ni content than the olivine grains hosted in the silicate rock. Most of the olivine grains are unzoned, and they have anomalously high Ni contents throughout the crystal. Assuming a partition coefficient of Ni between olivine and silicate magma to be 7, the measured Ni content of olivine in the lherzolite (1540–4023 ppm with a mean of 2907 ppm) indicates that the parental magma contains 220–575 ppm (average of 415 ppm) Ni. This value is higher than that found in basaltic magmas that crystallized olivine with similar Fo contents compared to the Huangshannan Intrusion. As mentioned above, the symmetric and reproducible variations in both Fo and Ni contents from core to margin in most of the olivine grains cannot be explained by fractional crystallization and reactions with interstitial silicate or sulfide melts but may reflect the equilibration of the olivine with new fluxes of magma as the chamber was replenished. The anomalously Ni-rich composition of the parental magmas of the Huangshannan Intrusion, relative to those of many other mineralized olivine-bearing mafic-ultramafic intrusions, may be produced by upgrading and scavenging of metals from a previously formed sulfide melts by a moderately Ni-rich magma. The mass-balance calculations of PGE data indicate that the parental magma that formed lherzolite contains 0.04 ppb Os, 0.02 ppb Ir and 0.4 ppb Pd, whereas the parental magma that formed websterite has 0.02 ppb Os, 0.009 ppb Ir and 0.75 ppb Pd. Rayleigh modeling using PGE tenors indicates that the massive sulfides may be produced by monosulfide solid solution (MSS)-sulfide liquid fractionation from the magma that formed the websterite. Rayleigh modeling of Fo and Ni contents of olivine shows that the parental magma that formed the lherzolite has experienced previous sulfide segregation and olivine crystallization.  相似文献   

17.
The current study was designed to investigate the extent and severity of contamination as well as the fractionation of potentially toxic elements (As, Cd, Cr, Cu, Pb, Zn, Ni) in minesoils and agricultural soils around a Pb–Zn mine in central Iran. For this purpose, 20 agricultural soils and eight minesoils were geochemically characterized. Results showed that minesoils contained elevated concentrations of As (12.9–254 mg kg−1), Cd (1.2–55.1 mg kg−1), Pb (137–6239 mg kg−1) and Zn (516–48,889 mg kg−1). The agricultural soils were also polluted by As (5.5–57.1 mg kg−1), Cd (0.2–8.5 mg kg−1), Pb (22–3451 mg kg−1) and Zn (94–9907 mg kg−1). The highest recorded concentrations for these elements were in soils influenced directly by tailing ponds. Chromium, Cu and Ni content in agricultural soils (with average value of 74.1, 34.6 and 50.7 mg kg−1, respectively) were slightly higher than the minesoils (with average value of 54.5, 33.1 and 43.4 mg kg−1, respectively). Sequential extraction data indicated that there were some differences between the speciation of PTEs in soil samples. In the agricultural soils, Zn and Cd were mainly associated with carbonate bound fraction, As and Pb with reducible fraction, Cu with oxidisable fraction and Cr and Ni with residual phase. With respect to mobility factor values, Zn and Cd in the agricultural soils have been found to be the most mobile while As mobility is negligible. Also, the mobility factor of As, Cd and Pb in agricultural soils adjoining tailing ponds was high. In minesoil sample Cd was most abundant in the carbonate form, whereas other studied elements were mainly present in the reducible and residual fractions; therefore, despite the high total concentrations of As, Pb and Zn in the minesoils, the environmental risk of these elements was low. Based on the obtained data, a portion of Cu, Cr and Ni input was from agricultural activities.  相似文献   

18.
Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.  相似文献   

19.
《Ore Geology Reviews》2007,30(3-4):177-241
Australia's nickel sulfide industry has had a fluctuating history since the discovery in 1966 of massive sulfides at Kambalda in the Eastern Goldfields of Western Australia. Periods of buoyant nickel prices and high demand, speculative exploration, and frenetic investment (the ‘nickel boom’ years) have been interspersed by protracted periods of relatively depressed metal prices, exploration inactivity, and low discovery rates. Despite this unpredictable evolution, the industry has had a significant impact on the world nickel scene with Australia having a global resource of nickel metal from sulfide ores of ∼ 12.9 Mt, five world-class deposits (> 1 Mt contained Ni), and a production status of number three after Russia and Canada. More than 90% of the nation's known global resources of nickel metal from sulfide sources were discovered during the relative short period of 1966 to 1973. Australia's nickel sulfide deposits are associated with ultramafic and/or mafic igneous rocks in three major geotectonic settings: (1) Archean komatiites emplaced in rift zones of granite–greenstone belts; (2) Precambrian tholeiitic mafic–ultramafic intrusions emplaced in rift zones of Archean cratons and Proterozoic orogens; and (3) hydrothermal-remobilized deposits of various ages and settings. The komatiitic association is economically by far the most important, accounting for more than 95% of the nation's identified nickel sulfide resources. The ages of Australian komatiitic- and tholeiitic-hosted deposits generally correlate with three major global-scale nickel-metallogenic events at ∼ 3000 Ma, ∼ 2700 Ma, and ∼ 1900 Ma. These events are interpreted to correspond to periods of juvenile crustal growth and the development of large volumes of primitive komatiitic and tholeiitic magmas caused by large-scale mantle overturn and mantle plume activities. There is considerable potential for the further discovery of komatiite-hosted deposits in Archean granite–greenstone terranes including both large, and smaller high-grade (5 to 9% Ni) deposits, that may be enriched in PGEs (2 to 5 g/t), especially where the host ultramafic sequences are poorly exposed.Analysis of the major komatiite provinces of the world reveals that fertile komatiitic sequences are generally of late Archean (∼ 2700 Ma) or Paleoproterozoic (∼ 1900 Ma) age, have dominantly Al-undepleted (Al2O3/TiO2 = 15 to 25) chemical affinities, and often occur with sulfur-bearing country rocks in dynamic high-magma-flux environments, such as compound sheet flows with internal pathways facies (Kambalda-type) or dunitic compound sheet flow facies (Mt Keith-type). Most Precambrian provinces in Australia, particularly the Proterozoic orogenic belts, contain an abundance of sulfur-saturated tholeiitic mafic ± ultramafic intrusions that have not been fully investigated for their potential to host basal Ni–Cu sulfides (Voisey's Bay-type mineralization). The major exploration challenges for finding these deposits are to determine the pre-deformational geometries and younging directions of the intrusions, and to locate structural depressions in the basal contacts and feeder conduits under cover. Stratabound PGE–Ni–Cu ± Cr deposits hosted by large Archean–Proterozoic layered mafic–ultramafic intrusions (Munni Munni, Panton) of tholeiitic affinity have comparable global nickel resources to many komatiite deposits, but low-grades (< 0.2% Ni). There are also hydrothermal nickel sulfide deposits, including the unusual Avebury deposit in western Tasmania, and some potential for ‘Noril'sk-type’ Ni–Cu–PGE deposits associated with major flood basaltic provinces in western and northern Australia.  相似文献   

20.
The Manipur Ophiolite Complex (MOC) located in the Indo-Myanmar Orogenic Belt (IMOB) of Northeast India forms a section of the Tethyan Ophiolite Belt of the Alpine–Himalayan orogenic system. Whole rock compositions and mineral chemistry of mantle peridotites from the MOC show an affinity to the abyssal peridotites, characterized by high contents of Al2O3 (1.28–3.30 anhydrous wt.%); low Cr# of Cr-spinel (0.11–0.27); low Mg# of olivine (∼Fo90) and high Al2O3 in pyroxenes (3.71–6.35 wt.%). They have very low REE concentrations (∑REE = 0.48–2.14 ppb). Lherzolites display LREE-depleted patterns (LaN/SmN = 0.14–0.45) with a flat to slightly fractionated HREE segments (SmN/YbN = 0.30–0.65) whereas Cpx-harburgites have flat to upward-inflected LREE patterns (LaN/SmN = 0.13–1.23) with more fractionated HREE patterns (SmN/YbN = 0.13–0.65) than the lherzolite samples. Their platinum group elements (PGE) contents (<50 ppb) and distinct mantle-normalised PGE patterns with the Pd/Ir values (1.8–11.9) and Pt/Pt* values (0.2–1.1) show an affinity to the characteristic of the residual mantle material. Evaluation of mineralogical and petrological characteristics of these peridotites suggests that they represent the residues remaining after low degree of partial melting (∼2–12%) in the spinel stability field of a mid-oceanic ridge environment. The well-preserved mid-oceanic ridge characteristics of these peridotites further suggest that the mantle section was subsequently trapped in the forearc region of the subduction zone without undergoing significant modification in their chemistry by later subduction-related tectonic and petrological processes before its emplacement to the present crustal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号