首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In an attempt to quantify the extent of geochemical heterogeneity within a restricted and well dated portion of the upper mantle, 27 chromite separates from the 90 My old chromite deposits in the Mayarí–Baracoa ophiolite belt in eastern Cuba have been investigated for platinum group element (PGE) concentrations and Re–Os isotopic systematics. The samples are characterized by systematically subchondritic initial 187Os/188Os ratios and substantial heterogeneity. The initial 187Os/188Os ratios vary with chromite chemistry and with geographical distribution, reflecting differences in the Os isotopic evolution for the different upper mantle sections represented by the ophiolite. Accordingly, the Os isotope data might be divided into three groups. In the Moa–Baracoa district, where the chromite bodies are located in the mantle–crust transition zone, the calculated initial γOs values average − 0.97 ± 0.69 (n = 13). In the Sagua de Tanamo district, where chromite chemistry is highly variable and their location in relation the mantle sequence is less clear, the initial γOs values are intermediate, with an average of − 1.77 ± 0.80 (n = 7). In the Mayarí district, where the chromite bodies are located in the lower part of the mantle sequence, initial γOs values average − 2.66 ± 0.29 (n = 7). These subchondritic (i.e. negative) initial γOs values are most simply explained by Re depletion during ancient partial melting and/or melt percolation events.The Os isotope heterogeneity documented here indicates a high degree of geochemical complexity on small to intermediate length scales in the upper mantle. Our results, in combination with data on chromites from the literature, show that an “average present-day Os isotopic composition” for the hypothetical depleted MORB mantle (DMM) reservoir cannot be precisely established beyond the statement that it is “broadly chondritic”. Indeed, the upper mantle cannot be considered a sufficiently homogeneous geochemical “reservoir” to serve meaningfully as a baseline against which geochemical “anomalies” are evaluated. On the other hand, our findings are consistent with the “Statistical Upper Mantle Assemblage” or “SUMA”-concept, according to which a high level of geochemical heterogeneity is maintained in the upper mantle at all relevant length scales, as a result of the plate-tectonic cycle and intra-mantle processes such as melt-migration and metasomatism.  相似文献   

2.
High resolution records (ca. 100 kyr) of Os isotope composition (187Os / 188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os / 188Os excursion and confirm that the Late Eocene 187Os / 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151–165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os / 188Os minimum can be placed at 34.5 ± 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os / 188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ± 0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os / 188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os / 188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os / 188Os records with high resolution benthic foraminiferal δ18O records across the Eocene–Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os / 188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes and their effects on the marine 187Os / 188Os records are obscured by recovery from the Late Eocene 187Os / 188Os excursion, evidence of the global influence of glaciation on supply of Os to the ocean is robust as it has now been documented in both Pacific and Atlantic records.  相似文献   

3.
This study presents major-, trace-element, and rhenium–osmium (Re–Os) isotope and elemental data for basalts and gabbros from the Zermatt-Saas ophiolite, metamorphosed to eclogite-facies conditions during the Alpine orogeny. Igneous crystallisation of the gabbros occurred at 163.5 ± 1.8 Ma and both gabbro and basalt were subject to ‘peak’ pressure–temperature (PT) conditions of > 2.0 GPa and ~ 600 °C at about 40.6 ± 2.6 Ma.Despite such extreme PT conditions, Re–Os isotope and abundance data for gabbroic rocks suggest that there has been no significant loss of either of these elements during eclogite-facies metamorphism. Indeed, 187Re–187Os isotope data for both unaltered gabbros and gabbroic eclogites lie on the same best-fit line corresponding to an errorchron age of 160 ± 6 Ma, indistinguishable from the age of igneous crystallisation. In contrast, metamorphosed basalts do not yield age information; rather most possess 187Re/188Os ratios that cannot account for the measured 187Os/188Os ratios, given the time since igneous crystallisation. Taken with their low Re contents these data indicate that the basalts have experienced significant Re loss (∼ 50–60%), probably during high-pressure metamorphism. Barium, Rb and K are depleted in both gabbroic and basaltic eclogites. In contrast, there is no evident depletion of U in either lithology.Many ocean-island basalts (OIB) possess radiogenic Os and Pb isotope compositions that have been attributed to the presence of recycled oceanic crust in the mantle source. Published Re–Os data for high-P metabasaltic rocks alone (consistent with this study) have been taken to suggest that excessive amounts of oceanic crust are required to generate such signatures. However, this study shows that gabbro may exert a strong influence on the composition of recycled oceanic crust. Using both gabbro and basalt (i.e. a complete section of oceanic crust) calculations suggest that the presence of ≥ 40% of 2 Ga oceanic crust can generate the radiogenic Os compositions seen in some OIB. Furthermore, lower U/Pb ratios in gabbro (compared to basalt) serve to limit the 206Pb/204Pb ratios generated, while having a minimal effect on Os ratios. These results suggest that the incorporation of gabbro into recycling models provides a means of producing a range of OIB compositions having lower (and variable) 206Pb/204Pb ratios, but still preserving 187Os/188Os compositions comparable to HIMU-type OIB.  相似文献   

4.
In order to better understand the nature and formation of oceanic lithosphere beneath the Early Cretaceous Ontong Java Plateau, Re–Os isotopes have been analysed in a suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, thermobarometric and petrological evidence from previous studies reveal that the xenoliths represent virtually the entire thickness of the southern part of subplateau lithospheric mantle (< 120 km). This study demonstrates that vertical Os isotopic variations correlate with compositional variations in a stratified lithosphere. The shallowest plateau lithosphere (< 85 km) is dominated by fertile lherzolites showing a restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~ 160 Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle (~ 95–120 km) is enriched in refractory harzburgites with highly unradiogenic 187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages of 0.9–1.7 Ga. Although the whole range of Os isotope compositions of Malaita peridotites is within the variations seen in modern abyssal peridotites, the contrasting isotopic compositions of shallow and deep plateau lithosphere suggest their derivation from different mantle reservoirs. We propose that the subplateau lithosphere forms a genetically unrelated two-layered structure, comprising shallower, typical oceanic lithosphere underpinned by deeper impinged material, which included a component of recycled Proterozoic lithosphere. The impingement of residual but chemically heterogeneous mantle, mechanically coupled to the recently formed, thin lithosphere, may have a bearing on the anomalous initial uplift and late subsidence history of the seismically anomalous plateau root.  相似文献   

5.
Os–Hf–Sr–Nd isotopes and PGE were determined in peridotite xenoliths carried to the surface by Quaternary alkali basaltic magmas in the Tokinsky Stanovik Range on the Aldan shield. These data constrain the timing and nature of partial melting and metasomatism in the lithospheric mantle beneath SE Siberian craton. The xenoliths range from the rare fertile spinel lherzolites to the more abundant, strongly metasomatised olivine-rich (70–84%) rocks. Hf–Sr–Nd isotope compositions of the xenoliths are mainly within the fields of oceanic basalts. Most metasomatised xenoliths have lower 143Nd / 144Nd and 176Hf / 177Hf and higher 87Sr / 86Sr than the host basalts indicating that the metasomatism is older and has distinct sources. A few xenoliths have elevated 176Hf / 177Hf (up to 0.2838) and plot above the Hf–Nd mantle array defined by oceanic basalts.187Os / 188Os in the poorly metasomatised, fertile to moderately refractory (Al2O3  1.6%) Tok peridotites range from 0.1156 to 0.1282, with oldest rhenium depletion ages being about 2 Ga. The 187Os / 188Os in these rocks show good correlations with partial melting indices (e.g. Al2O3, modal cpx); the intercept of the Al–187Os / 188Os correlation with lowest Al2O3 estimates for melting residues (∼0.3–0.5%) has a 187Os / 188Os of ∼0.109 suggesting that these peridotites may have experienced melt extraction as early as 2.8 Gy ago. 187Os / 188Os in the strongly metasomatised, olivine-rich xenoliths (0.6–1.3% Al2O3) ranges from 0.1164 to 0.1275 and shows no apparent links to modal or chemical compositions. Convex-upward REE patterns and high abundances of heavy to middle REE in these refractory rocks indicate equilibration with evolved silicate melts at high melt / rock ratios, which may have also variably elevated their 187Os / 188Os. This inference is supported by enrichments in Pd and Pt on chondrite-normalised PGE abundance patterns in some of the rocks. The melt extraction ages for the Tok suite of 2.0 to 2.8 Ga are younger than oldest Os ages reported for central Siberian craton, but they must be considered minimum estimates because of the extensive metasomatism of the most refractory Tok peridotites. This metasomatism could have occurred in the late Mesozoic to early Cenozoic when the Tok region was close to the subduction-related Pacific margin of Siberia and experienced large-scale tectonic and magmatic activity. This study indicates that metasomatic effects on the Re–Os system in the shallow lithospheric mantle can be dramatic.  相似文献   

6.
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g? 1 Os, 1.5 ± 0.6 pg g? 1 Ir, 6.8 ± 2.7 pg g? 1 Ru, 16 ± 15 pg g? 1 Pt, 33 ± 30 pg g? 1 Pd and 0.29 ± 0.10 pg g? 1 Re (~ 0.00002 × CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (~ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle–crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments.If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust–mantle concentration ratios (D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust–mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a ‘missing component’ of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.  相似文献   

7.
High 4He/3He ratios of 100 000 to 160 000 found at HIMU ocean islands (“high μ,” where μ is the U/Pb ratio) are usually attributed to the presence of recycled oceanic crust in the HIMU mantle source. However, significantly higher 4He/3He ratios are expected in recycled crust after residence in the mantle for periods greater than 1 Ga. In order to better understand the helium isotopic signatures in HIMU basalts, we have measured helium and neon isotopic compositions in a suite of geochemically well-characterized basalts from the Cook–Austral Islands. We observe 4He/3He ratios ranging from 56 000 to 141 000, suggesting the involvement of mantle reservoirs both more and less radiogenic than the mantle source for mid-ocean ridge basalts (MORBs). In addition, we find that the neon isotopic compositions of HIMU lavas extend from the MORB range to compositions less nucleogenic than MORBs. The Cook-Austral HIMU He–Ne isotopic compositions, along with Sr, Nd, Pb, and Os isotopic compositions, indicate that in addition to recycled crust, a relatively undegassed mantle end-member (e.g., FOZO) is involved in the genesis of these basalts. The association of relatively undegassed mantle material with recycled crust provides an explanation for the close geographical association between HIMU lavas and EM (enriched mantle)-type lavas from this island chain: EM-type signatures represent a higher mixing proportion of relatively undegassed mantle material. Mixing between recycled material and relatively undegassed mantle material may be a natural result of entrainment processes and convective stirring in deep mantle.  相似文献   

8.
Carbonatites are mantle-derived, intraplate magmas that provide a means of documenting isotopic variations of the Earth's mantle through time. To investigate the secular Li isotopic evolution of the mantle and to test whether Li isotopes document systematic recycling of material processed at or near the Earth's surface into the mantle, we analyzed the Li isotopic compositions of carbonatites and spatially associated mafic silicate rocks. The Li isotopic compositions of Archean (2.7 Ga) to Recent carbonatites (δ7Li = 4.1 ± 1.3 (n = 23, 1σ)) overlap the range typical for modern mantle-derived rocks, and do not change with time, despite ongoing crustal recycling. Thus, the average Li isotopic composition of recycled crustal components has not deviated greatly from the mantle value (~ + 4) and/or Li diffusion is sufficiently fast to attenuate significant heterogeneities over timescales of 108 years. Modeling of Li diffusion at mantle temperatures suggests that limited δ7Li variation in the mantle through time reflects the more effective homogenization of Li in the mantle compared to radiogenic isotope systems. The real (but limited) variations in δ7Li that exist in modern mantle-derived magmas as well as carbonatites studied here may reflect isotopic fractionation associated with shallow-level processes, such as crustal assimilation and diffusive isotopic fractionation in magmatic systems, with some of the scatter possibly related to low-temperature alteration.  相似文献   

9.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

10.
The geochemical characteristics of mildly alkalic basalts (24–25 Ma) erupted in the southeastern Kerguelen Archipelago are considered to represent the best estimate for the composition of the enriched Kerguelen plume end-member. A recent study of picrites and high-MgO basalts from this part of the archipelago highlighted the Pb and Hf isotopic variations and suggested the presence of mantle heterogeneities within the Kerguelen plume itself. We present new helium and neon isotopic compositions for olivines from these picrites and high-MgO basalts (6–17 wt.% MgO) both to constrain the enriched composition of the Kerguelen plume and to determine the origin of isotopic heterogeneities involved in the genesis of Kerguelen plume-related basalts. The olivine phenocrysts have extremely variable 4He / 3He compositions between MORB and primitive values observed in OIB (∼90,000 to 40,000; i.e., R / Ra ∼8 to 18) and they show primitive neon isotopic ratios (average 21Ne / 21Neext ∼0.044). The neon isotopic systematics and the 4He / 3He ratios that are lower than MORB values for the Kerguelen basalts clearly suggest that the Kerguelen hotspot belongs to the family of primitive hotspots, such as Iceland and Hawaii. The rare gas signature for the Kerguelen samples, intermediate between MORB and solar, is apparently inconsistent with mixing of a primitive component with a MORB-like source, but may result from sampling a heterogeneous part of the mantle with solar 3He / 22Ne and with a higher (U, Th) / 3He ratio compared to typically high R / Ra hotspot basalts such as those from Iceland and Hawaii.  相似文献   

11.
The Nd isotopic composition of the aragonite skeleton of fossil deep-sea corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) located in the northeastern Atlantic at water depths between 635 and 1300 m was investigated to reconstruct changes in the Atlantic mid-depth gyre circulation during the past millennium. The coral εNd values varied systematically from ? 11.8 to ? 14.4 during the past 1500 years, reflecting variations in seawater εNd and thus water mass provenance. Low εNd values (εNd = ? 14) occurred during the warm Medieval Climatic Anomaly (MCA) (between 1000 AD and 1250 AD) and during the most recent period (1950 AD to 2000 AD), interrupted by a period of significantly higher εNd values (~?12.5) during the Little Ice Age (LIA) (between 1350 AD and 1850 AD). One long-lived branching coral even recorded an abrupt systematic rise from low to high εNd values around 1250 AD over the course of its 10-year growth period.These variations are interpreted to result from variable contributions of the subpolar and subtropical Atlantic intermediate water masses, which today are characterized by εNd values of ? 15 and ~?11, respectively. The low εNd values observed during the warm MCA and during recent times imply a strong eastward extension of the mid-depth subpolar gyre (SPG) induced by a dominant positive phase of the North Atlantic oscillation (NAO). During the LIA, water from the subtropical gyre (STG) and potentially from the Mediterranean Sea Water (MSW) propagated further northward, as indicated by the higher coral εNd values. This pattern suggests a negative mean state of the NAO during the LIA, with weaker and more southerly located Westerlies and a westward contraction of the SPG. Variations in the contributions of the two gyres imply changes in the heat and salt budgets at intermediate depths during the past millennia that may have contributed to changes in the properties of North Atlantic inflow into the Nordic Seas and thus deep-water formation.  相似文献   

12.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

13.
We report a survey of natural mass-dependent cadmium isotope fractionation measured by thermal ionization mass spectrometry using a double-spike technique (DS-TIMS). Over sixty samples of natural terrestrial Cd from diverse environments, including MORB, OIB, continental loess, hydrogenic and hydrothermal ferromanganese deposits, and sphalerites (both oceanic and from major continental ore deposits) were analysed. Our results are expressed in terms of ε112/110Cd, which are deviations in 112Cd/110Cd from our in-house JMC Cd standard in parts per 104. The total ε112/110Cd variation is relatively small, with a range of only 5 ε-units, and is one-to-two orders of magnitude smaller than that previously found in meteorites.The MORB, OIB and loess ε112/110Cd values are similar and provide a good estimate for the bulk silicate Earth (BSE) value which is ? 0.95 ± 0.12 relative to our Cd standard (ε112/110Cd = + 0.16 relative to Münster JMC Cd). Taken together, these data suggest little Cd isotope fractionation takes place during crust–mantle segregation. Cd isotopic compositions of continental sphalerite (ZnS) deposits worldwide and high-temperature oceanic hydrothermal sulphides show remarkably similar ε112/110Cd values, consistent with our estimate for the BSE. In contrast, mid-temperature oceanic sulphides from a single extinct hydrothermal chimney display over 4 ε-units variation — along with the most negative values. These variations are most probably caused by precipitation/redissolution of sulphide phases en route within the hydrothermal system.The ε112/110Cd variability found in worldwide marine Fe–Mn deposits reflects the seawater Cd isotope signal upon precipitation from ambient seawater. A decrease in ε112/110Cd is observed in passing from shallow-water Fe–Mn deposits to those from deeper waters (> 2000 m depth). This shift is explained by biological fractionation related to the uptake of dissolved seawater Cd by phytoplankton in the upper water column. The relatively uniform ε112/110Cd values close to zero at great depths are consistent with regeneration and remineralization of Cd at depth. Our data suggest that Cd isotopes – much like the Cd/Ca ratio in foraminifera – could potentially serve as a proxy for past changes in biological productivity. The temporal Cd isotope record in a Fe–Mn crust archive at 2000 m depth from the NE Atlantic suggests no gross long-term changes in Cd cycling took place over the past 8 Ma.  相似文献   

14.
The exceptionally well-preserved sedimentary rocks of the Taoudeni basin, NW Africa represent one of the world's most widespread (> 1 M km2) Proterozoic successions. Hitherto, the sedimentary rocks were considered to be Mid Tonian based on Rb–Sr illite and glauconite geochronology of the Atar Group. However, new Re–Os organic-rich sediment (ORS) geochronology from two drill cores indicates that the Proterozoic Atar Group is ~ 200 Ma older (1107 ± 12 Ma, 1109 ± 22 Ma and 1105 ± 37 Ma). The Re–Os geochronology suggests that the Rb–Sr geochronology records the age of diagenetic events possibly associated with the Pan African collision.The new Re–Os geochronology data provide absolute age constraints for recent carbon isotope chemostratigraphy which suggests that the Atar Group is Mesoproterozoic and not Neoproterozoic.The new Re–Os ORS geochronology supports previous studies that suggest that rapid hydrocarbon generation (flash pyrolysis) from contact metamorphism of a dolerite sill does not significantly disturb the Re–Os ORS systematics. Modelled contact conditions suggest that the Re–Os ORS systematics remain undisturbed at ~ 650 °C at the sill/shale contact and ≥ 280 °C 20 m from the sill/shale contact.Moreover, the Re–Os geochronology indicates that the West African craton has a depositional history that predates 1100 Ma and that ORS can be correlated on a basin-wide scale. In addition, the Re–Os depositional ages for the ORS of the Taoudeni basin are comparable to those of ORS from the São Francisco craton, suggesting that these cratons are correlatable. This postulate is further supported by identical Osi values for the Atar Group and the Vazante Group of the São Francisco craton.  相似文献   

15.
Tektites are terrestrial natural glasses produced during a hypervelocity impact of an extraterrestrial projectile onto the Earth's surface. The similarity between the chemical and isotopic compositions of tektites and terrestrial upper continental crust implies that the tektites formed by fusion of such target rock. Tektites are among the driest rocks on Earth. Although volatilization at high temperature may have caused this extreme dryness, the exact mechanism of the water loss and the behavior of other volatile species during tektite formation are still debated. Volatilization can fractionate isotopes, therefore, comparing the isotope composition of volatile elements in tektites with that of their source rocks may help to understand the physical conditions during tektite formation.For this study, we have measured the Zn isotopic composition of 20 tektites from four different strewn fields. Almost all samples are enriched in heavy isotopes of Zn compared to the upper continental crust. On average, the different groups of tektites are isotopically distinct (listed from the isotopically lightest to the heaviest): Muong-Nong type indochinites (δ66/64Zn = 0.61 ± 0.30‰); North American bediasites (δ66/64Zn = 1.61 ± 0.49‰); Ivory Coast tektites (δ66/64Zn = 1.66 ± 0.18‰); the Australasian tektites (others than the Muong Nong-type indochinites) (δ66/64Zn = 1.84 ± 0.42‰); and Central European moldavites (δ66/64Zn = 2.04 ± 0.19‰). These results are contrasted with a narrow range of δ66/64Zn = 0–0.7‰ for a diverse spectrum of upper continental crust materials.The elemental abundance of Zn is negatively correlated with δ66/64Zn, which may reflect that isotopic fractionation occurred by evaporation during the heating event upon tektite formation. Simple Rayleigh distillation predicts isotopic fractionations much larger than what is actually observed, therefore, such a model cannot account for the observed Zn isotope fractionation in tektites. We have developed a more realistic model of evaporation of Zn from a molten sphere: during its hypervelocity trajectory, the molten surface of the tektite will be entrained by viscous coupling with air that will then induce a velocity field inside the molten sphere. This velocity field induces significant radial chemical mixing within the tektite that accelerates the evaporation process. Our model, albeit parameter dependent, shows that both the isotopic composition and the chemical abundances measured in tektites can be produced by evaporation in a diffusion-limited regime.  相似文献   

16.
The propagation features of nighttime whistlers to low-latitude station, Suva (−18.2°, 178.3°, geomag. lat. −22.1°, geomag. long. 253.5°, L=1.15), Fiji, from preliminary observations made during the period from September 2003–2005, are reported. The observations of ELF–VLF signals commenced in September 2003 using the VLF set-up of World Wide Lightning Location Network at our station. The whistlers were observed during the severe magnetic storm of 20–22 November 2003 and moderate magnetic storm of 17–19 July 2005. A whistler with dispersion D=12.7 s1/2 occurred on 22 November at 00:11 h LT. On 20 July at 01:00 h LT, a short whistler with dispersion D=20.9 s1/2 and two whistler events having two-component whistlers with D=15.8, 16.7 s1/2 and 16.7, 17.3 s1/2 were observed. Non-ducted pro-longitudinal mode of the whistler propagation supported by negative latitudinal electron density gradients in the ionosphere that are enhanced by magnetic storms, seems most likely mode of propagation for the whistlers with dispersion of 12.7–17.3 s1/2 to this low-latitude station.  相似文献   

17.
The possible sources of pre-anthropogenic Pb contributed to the world's oceans have been the focus of considerable study. The role of eolian dust versus riverine inputs has been of particular interest. With better calibration of isotopic records from central Pacific ferromanganese crusts using Os isotope stratigraphy it now appears that deep water Pb isotopic compositions were effectively homogeneous over a distance of 5000 km for the past 80 Myr. The composition shifted slightly from high 206Pb/204Pb ratios in the range of 18.87 ± 0.02 before 65 Ma to lower values of 18.62 ± 0.02 by 45 Ma and then gradually increased again very slightly to the present day ratio of 18.67 ± 0.02. The regional homogeneity provides evidence of a dominant well-mixed atmospheric source the most likely candidate for which is volcanic aerosols contributed either directly or as soluble condensates on eolian dust. The slight shift in Pb isotope composition of deep waters in the central Pacific between 65 and 45 Ma may be the result of a regional- or perhaps global-scale change in the sources of volcanic exhalations and volcanic activity caused by an increase in the importance of melting and assimilation of older continental crustal components over the Cenozoic.  相似文献   

18.
A suite of 23 basaltic to dacitic lavas erupted over the last 350 kyr from the Mount Adams volcanic field has been analyzed for U–Th isotope compositions to evaluate the roles of mantle versus crustal components during magma genesis. All of the lavas have (230Th/238U) > 1 and span a large range in (230Th/232Th) ratios, and most basalts have higher (230Th/232Th) ratios than andesites and dacites. Several of the lavas contain antecrysts (crystals of pre-existing material), yet internal U–Th mineral isochrons from six of seven lavas are indistinguishable from their eruption ages. This indicates a relatively brief period of time between crystal growth and eruption for most of the phenocrysts (olivine, clinopyroxene, plagioclase, magnetite) prior to eruption. One isochron gave a crystallization age that is ~ 20–25 ka older than its corresponding eruptive age, and is interpreted to reflect mixing of older and juvenile crystals or a protracted period of magma storage in the crust. Much of the eruptive volume since 350 ka consists of lavas that have small to moderate 230Th excesses (2–16%), which are likely inherited from melting of a garnet-bearing intraplate (“OIB-like”) mantle source. Following melt generation and subsequent migration through the upper mantle, most Mt. Adams magmas interacted with young, mafic lower crust, as indicated by 187Os/188Os ratios that are substantially more radiogenic than the mantle or those expected via mixing of subducted material and the mantle wedge. Moreover, Os–Th isotope variations suggest that unusually large 230Th excesses (25–48%) and high 187Os/188Os ratios in some peripheral lavas reflect assimilation of small degree partial melts of pre-Quaternary basement that had residual garnet or Al-rich clinopyroxene. Despite the isotopic evidence for lower crustal assimilation, these processes are not generally recorded in the erupted phenocrysts, indicating that the crystal record of the deep-level ‘cryptic’ processes has been decoupled from shallow-level crystallization.  相似文献   

19.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

20.
The ~ 14 km diameter Jänisjärvi impact structure is located in Svecofennian Proterozoic terrain in the southeastern part of the Baltic shield, Karelia, Russia. Previous radioisotopic dating attempts gave K/Ar and 40Ar/39Ar ages of 700 ± 5 Ma and 698 ± 22 Ma, respectively, with both results being difficult to interpret. Recent paleomagnetic results have challenged these ages and proposed instead ages of either 500 Ma or 850–900 Ma. In order to better constrain the age of the Jänisjärvi impact structure, we present new 40Ar/39Ar data for the Jänisjärvi impact melt rock. We obtained five concordant isochron ages that yield a combined isochron age of 682 ± 4 Ma (2σ) with a MSWD of 1.2, P = 0.14, and 40Ar/36Ar intercept of 475 ± 3. We suggest that this date indicates the age of the impact and therefore can be used in conjunction with existing paleomagnetic results to define the position of the Baltica paleocontinent at that time. Argon isotopic results imply that melt homogenization was achieved at the hundred-micrometer scale certainly, because of the low-silica content of the molten target rock that allows fast 40Ar? diffusion in the melt. However, the large range of F(40Ar?inherited) (4.1% to 11.0%) observed for seven grains shows that complete isotopic homogenization was not reached at the centimeter and perhaps the millimeter scale. The F(40Ar?inherited) results are also in good agreement with previous Rb and Sr isotopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号