首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report Lithium (Li) concentrations and isotopic compositions for co-existing olivine, orthopyroxene (opx), and clinopyroxene (cpx) mineral separates from depleted and metasomatised peridotite xenoliths hosted by basaltic lavas from northwestern Ethiopian plateau (Gundeweyn area). The peridotites contain five lherzolites and one harzburgite and are variably depleted and enriched in LREE relative to HREE. In both depleted and enriched lherzolites, Li is preferentially incorporated into olivine (2.4-3.3 ppm) compared to opx (1.4-2.1 ppm) and cpx (1.4-2.0 ppm) whereas the Li contents of olivines (5.4 ppm) from an enriched harzburgiteare higher than those of lherzolites. Olivines from the samples show higher Li abundances than normal mantle olivines (1.6-1.9 ppm) indicating the occurrence of Li enrichments through melt-preroditite interaction. The average δ7 Li values range from +2.2 to +6.0‰ in olivine, from -0.1 to +2.0‰ in opx and from -4.4 to -0.9‰ in cpx from the lherzolites. The Li isotopic composition (3.5‰) of olivines from harzburgite fall within the range of olivine from lherzolites but the opxs show low in δ7Li (-2.0‰). Overall Li isotopic compositions of olivines from the peridotites fall within the range of normal mantle olivine, δ7Li values of ~+4±2‰ within uncertainty, reflecting metasomatism (enrichment) of the peridotites by isotopically heavy Li-rich asthenospheric melt. Li isotope zonation is also observed in most peridotite minerals. Majority of olivine grains display isotopically heavy cores and light rims and the reverse case is observed for some olivine grains. Orthopyroxene and clinopyroxene grains show irregular distribution in δ7Li. These features of Li isotopic compositions within and between grains in the samples reflect the effect of diffusion-driven isotopic fractionation during meltperidotite interaction and cooling processes.  相似文献   

2.
A method has been developed for extraction of hydroxyl oxygen from hydroxyl-bearing silicate minerals for oxygen isotopic analysis.The δO18 of oxygen of the OH groups is significantly different from that in the rest of the mineral structure. The isotopic fractionation between the two types of sites has the potential to be a sensitive geothermometer.Several δO18 values were obtained for oxygen of the OH attached to different silicate structures as well as for two muscovite samples with quantitatively estimated different temperatures of formation.The 1000 ln α (mineral-OH) values ranged from 5.2%. for muscovite to about 12.6%. for kaolinite and chlorite.  相似文献   

3.
 Alkali basalts and nephelinites from the volcanic province of northern Tanzania contain pyroxene and nepheline that show evidence for chemical and/or isotopic disequilibria with their host magmas. Olivine, pyroxene, nepheline and plagioclase all appear to be partially xenocrystic in origin. Five whole rock/mineral separate pairs have been analyzed for Sr, Nd, and Pb isotopic compositions. The 206Pb/204Pb ratios are distinct by as much as 20.94 (whole rock) vs. 19.10 (clinopyroxene separate). The Sr and Nd isotopic disequilibria vary from insignificant in the case of nepheline, to Δ 87Sr/86Sr of 0.0002 and ΔɛNd of 0.7 in the case of clinopyroxene. The mineral chemistry of 25 samples indicates the ubiquitous presence of minerals that did not crystallize from a liquid represented by the host rock. The northern Tanzanian magmas are peralkaline and exhibit none of the xenocrystic phases expected from crustal assimilation. The disequilibria cannot be the result of mantle source variations. Rather the xenocrystic phases present appear to have been derived from earlier alkali basaltic rocks or magmas that were contaminated by the crust. Material from this earlier magma was then mixed with batches of magma that subsequently erupted on the surface. Disequilibrium in volcanic rocks has potentially serious consequences for the use of whole rock data to identify source reservoirs. However, mass balance calculations reveal that the 206Pb/204Pb isotopic compositions of the erupted lavas were changed by less than 0.25% as a result of this indirect crustal contamination. Received: 15 February 1995 / Accepted: 4 May 1996  相似文献   

4.
Lithium elemental and isotopic disequilibrium has frequently been observed in the continental and oceanic mantle xenoliths, but its origin remains controversial. Here, we present a combined elemental and Li isotopic study on variably metasomatised peridotite xenoliths entrained in the Cenozoic basalts from Shangzhi in Northeast (NE) China that provides insight into this issue. Li concentration (0.3–2.7 ppm) and δ7Li (mostly 2‰–6‰) in olivine from the Shangzhi peridotites are similar to the normal mantle values and show roughly negative correlations with the indices of melt extraction (such as modal olivine and whole rock MgO). These features are consistent with variable degrees of partial melting. In contrast, clinopyroxene from the Shangzhi xenoliths shows significant Li enrichment (0.9–6.1 ppm) and anomalously light δ7Li (??13.8‰ to 7.7‰) relative to normal mantle values. Such features can be explained by Li diffusion from silicate melts or Li-rich fluids occurring over a very short time (several minutes to several hours). Moreover, the light Li isotopic compositions preserved in some bulk samples also indicate that these percolated melts/fluids have not had enough time to isotopically equilibrate with the bulk peridotite. We thus emphasize that Li isotopic fractionation in the Shangzhi mantle xenoliths is mainly related to Li diffusion from silicate melts or Li-rich fluids that took place shortly before or coincident with their entrainment into the host magmas.  相似文献   

5.
The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.  相似文献   

6.
Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, −23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry.  相似文献   

7.
Primary carbonates in peridotite xenoliths from the East African Rift in northeastern Tanzania occur as intergranular patches with accessory minerals (olivine and spinel), as patches with accessory magmatic minerals (nepheline), and as round monomineralic inclusions in primary olivine grains. All are characterized by calcitic compositions (Ca/Ca + Mg + Fe from 0.83 to 0.99), extremely low SiO2 + Al2O3 + Na2O + K2O, low trace element abundance [total rare-earth element (REE) abundance <25 ppm], uniform extinction, and lack of reaction textures with the host xenolith. Calculated Fe–Mg exchange coefficients between carbonate and primary olivine indicate disequilibrium in most samples. Combined with the lack of significant reaction textures, this suggests that the carbonates were introduced shortly before or during eruption of the host magma. A global compilation of electron microprobe analyses of mantle-derived carbonates (in xenoliths, xenocrysts, and megacrysts) reveals compositional clusters near end member calcite, end member magnesite, and stoichiometric dolomite. Eutectic liquid compositions are less common, suggesting that many carbonate inclusions reported worldwide may be crystalline precipitates. Likewise, the calcites in this study are not interpreted to represent quenched carbonatitic melts, but are interpreted instead to be crystalline cumulates from such melts. These inferences are consistent with recent experiments, which show that carbonatitic melts cannot become more calcitic than CaCO3∼80 wt%. Low trace element abundance may be a diagnostic feature of cumulate carbonate, and in combination with petrography and major element composition, serve to distinguish it from quenched carbonated liquid. Received: 30 July 1999 / Accepted: 5 February 2000  相似文献   

8.
山东荣成马草夼橄榄岩矿物地球化学研究   总被引:1,自引:0,他引:1  
马草夼橄榄岩位于苏鲁超高压变质带山东荣成腾家集附近,其原岩为残余地幔方辉橄榄岩,经历了超高压变质作用和后期麻粒岩-角闪岩相变质作用.对马草夼橄榄岩及侵入于其中的辉石岩脉和角闪岩脉的主要矿物橄榄石、斜方辉石和角闪石做了单矿物微量元素和稀土元素地球化学分析,结果表明Co和Ni在橄榄石中含量最高且富集,在斜方辉石和角闪石中含量低且亏损.由于橄榄石在全岩中含量高达90%以上,因而全岩Co、Ni富集.虽然角闪石在全岩中体积含量仅占3%~8%,但斜方辉石和橄榄石的微量和稀土元素含量远远低于角闪石,故全岩的微量(Co、Ni除外)和稀土元素化学特征受控于角闪石.斜方辉石、橄榄石与角闪石的微量和稀土元素分布特征基本相同,辉石岩脉和角闪岩脉中的角闪石比地幔橄榄岩中的角闪石更富集微量和稀土元素.微量和稀土元素地球化学特征显示马草夼橄榄岩至少受到了含Co、Ni的流体,富含LREE、Ba、Sr、Ta的硅酸盐流体和少量低Th、U的碳酸盐地幔流体的多次交代,流体交代发生于超高压变质后期浅部地幔驻留期间.马草夼橄榄岩所处的氧逸度(相对于FMQ)为+1.0~+2.0,落入正常大陆地幔的范围,在折返过程中未受到壳源流体的影响,保持了地幔氧同位素特征.  相似文献   

9.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

10.
Equilibrium boron isotopic fractionations between trigonal B(OH)3 and tetragonal B(OH)4 aqueous species have been calculated at high P-T conditions using measured vibrational spectra (Raman and IR) and force-field modeling to compute reduced partition function ratios for B-isotopic exchange following Urey’s theory. The calculated isotopic fractionation factor at 300 K, α3/4 = 1.0176(2), is slightly lower than the formerly calculated value of α3/4 = 1.0193 (Kakihana and Kotaka, 1977), due to differences in the determined vibrational frequencies. The effect of pressure on α3/4 up to 10 GPa and 723 K is shown to be negligible relative to temperature or speciation (pH) effects. Implications for the interpretation of boron fractionation in experimental and natural systems are discussed. We also show that the relationship between seawater-mineral B isotope fractionation and pH can be expressed using two variables, α3/4 on one hand, and the pKa of the boric acid-borate equilibrium on the other hand. This latter value is given by the equilibrium of boron species in water for the carbonate-water exchange, but could be governed by mineral surface properties in the case of clays. This may allow defining intrinsic paleo-pHmeters from B isotope fractionation between carbonate and authigenic minerals. Finally, it is shown that fractionation of boron isotopes can be rationalized in terms of the changes in 1) coordination of B from trigonal to tetrahedral in both fluids and minerals; and 2) the ligand nature around B from OH in the fluid and some hydrous minerals to non-hydrogenated O in many minerals. Relationships are established that allow predicting the isotopic fractionation factor of B between minerals and fluid.  相似文献   

11.
In order to document the origin and speciation of nitrogen in mantle-derived rocks and minerals, the N and Ar contents and isotopic compositions were investigated for hydrous and anhydrous peridotite xenoliths from Ataq, Yemen, from Eifel, Germany, and from Massif Central, France. Nitrogen and Ar were extracted by stepwise combustion with a fine temperature resolution, followed by fusion in a platinum crucible. A large isotopic disequilibrium of up to 25.4‰ is observed within single peridotite xenoliths, with δ15N values as low as −17.3‰ in phlogopite whereas clinopyroxene and olivine show positive δ15N values. Identical Sr isotopic ratios of phlogopite, clinopyroxene and whole rock in this wehrlite sample are consistent with crystallization from a common reservoir, suggesting that the light N signature of phlogopite might be the result of isotopic fractionation during N uptake from the host magma. The nitrogen concentration is systematically high in phlogopite, (7.6-25.7 ppm), whereas that of bulk peridotite xenoliths is between 0.1 and 0.8 ppm. The high N content of phlogopite is at least partly due to host magma-mineral interaction, and may also suggest the occurrence of N as that substituted for K+ during mineral growth in mafic magmas. Such speciation is consistent with the fact that N and Rb contents correlate well for a set of samples from mantle regions that were affected by subduction-related metasomatism and magmatism. The N/Rb ratios of these samples are comparable with values estimated for subduction zone magmas, but are one order of magnitude lower than the N/Rb ratios characterizing subducting slabs. This difference suggests preferential release of N relative to alkalis in the forearc region. N/40Ar ratios of minerals from analyzed mantle xenoliths are much higher than those of vesicles in MORBs and OIBs, requiring either the occurrence of nitrogen speciation in the mantle more compatible than Ar, significant loss of fluid phase during entrainment, or long residence time of volatile elements in the mantle source(s) of fluids to increase drastically the 40Ar budget of the latter.  相似文献   

12.
对12个来自河北汉诺坝玄武岩的橄榄岩包体中的单斜辉石和斜方辉石进行了详细的微区傅立叶变换红外光谱(Micro-FTIR)分析。结果显示,所有的单斜辉石和斜方辉石颗粒都含有以OH形式存在的结构水。对部分粒径较大的辉石颗粒内部的多点分析表明,结构水含量表现出中心高边缘低的不均一分布。这种不均一分布的特征应该来自于包体上升过程中由于压力降低而引起的H扩散。如果用每个样品多个测定颗粒的中心部位的平均值来代表该样品,12个样品的单斜辉石水含量为48×10-6~152×10-6,斜方辉石水含量20×10-6~55×10-6。根据矿物水含量(假设橄榄石的水含量为2×10-6)和它们的体积分数计算的全岩水含量为11×10-6~48×10-6。结合已经发表的橄榄岩包体数据来看,在岩石圈地幔的物理化学条件下,单斜辉石与斜方辉石之间水的平衡分配系数大约为2.2±0.6;岩石圈中水的分布可能具有纵向和横向上的不均一性。  相似文献   

13.
西藏泽当地幔橄榄岩中的异常矿物及其指示意义   总被引:2,自引:0,他引:2       下载免费PDF全文
雅鲁藏布江蛇绿岩带内多个地幔橄榄岩体产有金刚石、碳硅石等异常矿物组合,为了进一步探讨这些异常矿物形成的物理化学条件,在前人已有的研究基础上,对泽当地幔岩体中526 kg的方辉橄榄岩样品开展人工重砂矿物学研究工作。研究表明,同雅鲁藏布江蛇绿岩带内的其他岩体相似,泽当地幔橄榄岩也选出了包含金刚石、碳硅石、锆石等30余种矿物。异常矿物组合指示泽当地幔橄榄岩中存在局部的超高压、极还原环境,可能经历了复杂的演化过程:即古老地壳物质通过深俯冲或者折沉作用,进入地幔甚至是地幔过渡带(410~660 km),随后经历了超高压、极还原环境的改造,在后续的地幔柱或地幔对流作用中从洋中脊上升至浅部环境并返回到地壳中。该过程中地幔橄榄岩中的异常矿物组合记录了岩石的演化信息,因此开展地幔橄榄岩中异常矿物组合的精细矿物学研究,对认识壳-幔物质交换以及深部地幔动力学过程都有重要的研究意义。  相似文献   

14.
Origins of high nitrate in groundwater in Tanzania   总被引:3,自引:0,他引:3  
Dodoma is located in a semi-arid climate (mean annual rainfall 550 mm) in an area of crystalline basement rock. The groundwater contains high nitrate with NO3 concentrations averaging 150 mg l−1 and total mineralization between 1000–3000 mg l−1. Factor analysis has been used for the identification of factors that bring about the chemical character of groundwater. Three rotated factors, explaining 77.2% of the total data variance, were extracted. The first factor accounts for 51.0% of the variance and shows high positive correlation with Na+, K+, Mg2+, Ca2+, Cl, SO42−, HCO3 and SEC and is attributed to the leaching of surface and soil salts together with mineral dissolution. The second factor accounts for 14.1% of the variance and is positively correlated with NO3 and negatively correlated with pH; this is explained by the nitrification process taking place on the sewage effluents. The third factor is highly positively correlated with 18O and 2H, accounting for 12.1% of the variance and is a consequence of evaporation processes. Nitrate concentrations greater than 100 mg l−1 are commonly found in both deep and shallow groundwaters. It is concluded that the high nitrate concentrations have originated from the sewage effluents that are advecting and dispersing through macropores under bypass flow mechanisms.  相似文献   

15.
Some garnet peridotite nodules from The Thumb, a minette neck on the Colorado Plateau in the southwestern United States, contain zoned minerals. Zoning does not exceed 1.5 wt.% for any oxide, but some relative changes are large: in one garnet TiO2 and Cr2O3 ranges are 0.05–0.65 and 3.5–5.0 wt.%, respectively. In two porphyroclastic nodules, garnet rims are depleted in Mg and enriched in Fe, Ti, and Na compared to cores, and one garnet is irregularly zoned in Ti and Cr. Olivine crystals in these rocks are unzoned, and pyroxene zoning is slight, yet matrix olivine and pyroxene contain more Fe and Ti and less Mg and Cr than inclusions of these phases in garnet. In three coarse nodules, garnet rims are Ti-rich compared to cores, and Ca, Fe, Mg, and Cr zoning patterns are complex. Several nodules appear to have partially equilibrated near 1200° C and 35 kb, and under these conditions cation mobility in pyroxene was greater than in garnet. The zoning partly reflects Fe and Ti metasomatism in the mantle. Calculations indicate that Fe-Mg gradients in garnet could have persisted for only a short time in the mantle, perhaps thousands of years or less, so the metasomatism occurred shortly before eruption. The minette host, a likely source of the Fe and Ti, is rich in light rare earth elements: since the nodules are much poorer in these elements, little or no infiltrated minette was trapped in them. Diffusion is a possible mechanism for nodule metasomatism. Some fertile peridotite nodules from kimberlites may have been affected by similar events. Compositional differences between inclusions in garnet and matrix phases are intriguingly similar to some of the differences between most peridotite inclusions in diamonds and common lherzolite phases.  相似文献   

16.
安徽女山新生代玄武岩中橄榄岩包体矿物的含水性研究   总被引:11,自引:3,他引:8  
本文对15个来自安徽女山新生代玄武岩的橄榄岩包体矿物(橄榄石、单斜辉石和斜方辉石)进行了详细的微区傅立叶变换红外光谱(Micro-FTIR)分析。结果显示,所有被测的橄榄石颗粒都没有明显的OH吸收峰,这表明橄榄石要么不舍结构水,要么结构水含量〈2ppm(H2Owt.下同);所有的单斜辉石和斜方辉石颗粒都含有以OH形式存在的结构水。辉石矿物颗粒内部的结构水含量要么是均一的,要么表现出中心高边缘低的不均一分布。这种不均一分布的特征应该来自于包体上升过程中由于压力降低而引起的H扩散。如果用每个样品多个测定颗粒的中心部位的平均值来代表该样品的话,15个样品的单斜辉石水含量为6~356ppm,斜方辉石水含量6~139ppm。单斜辉石与斜方辉石之间水含量的比值为-2.5,和文献中报道的分配系数吻合,表明女山单斜辉石和斜方辉石之间达到了H平衡。女山的橄榄岩分成低温(〈950℃)和高温(〉1050℃)两组,所有的含角闪石的样品都在低温组。高温组的斜方辉石和单斜辉石表现出H2O含量和Al含量的正相关、和Mg含量的负相关,表明Al^3+H^←→Si^4+和Al^+H^+←→2Mg^2+是辉石中H的主要结合机制,同时也表明这些样品有效地保存了其在源区的原始结构水含量。而低温组的辉石偏离了相关趋势,结合该组部分样品含有角闪石的特征,我们提出一个流体(本文中采用广义的概念,即包括熔体和流体)上升交代的模式来解释女山橄榄岩的特征:流体从下向上运移,与高温组(下部)橄榄岩先发生反应,由于水含量较低,既没有影响橄榄岩矿物的原始水含量,也没有能形成角闪石,在上升的过程中由于发生名义上无水矿物(橄榄石,辉石等巨晶)的结晶分离,流体中的水含量不断增加,积累到一定程度,即与低温组(上部)橄榄岩反应时。不仅影响了橄榄岩矿物的原始水含量,也在部分样品中形成了角闪石。  相似文献   

17.
18.
The partitioning of divalent (Co, Ni) and trivalent (Sc, Cr) trace elements between olivine, ortho- and clinopyroxene and spinel from spinel peridotite xenoliths has been investigated. These peridotites cover a wide range in modal composition from dunite to primitive lherzolites and have equilibrated in the upper mantle between >900° C and <1,200° C.The distribution of Co and Ni shows only minor variation through the whole sequence. In contrast, Sc partitioning between ortho- and clinopyroxene and olivine and clinopyroxene as well as Cr partitioning between olivine and clinopyroxene or olivine and orthopyroxene display high but systematic variations which can be assigned to dependences upon equilibration temperatues. Empirical temperature calibrations are given for Sc-orthopyroxene/clinopyroxene, Sc-olivine/clinopyroxene and Cr-olivine/clinopyroxene which, in principle, may permit to estimate equilibration temperatures not only for lherzolites or harzburgites but for orthopyroxene-free peridotites, too.Sc and Ni partition coefficients between spinel and mantle silicate minerals are primarily dependent upon the major element composition of spinel (e.g. Cr and Al) although a temperature dependence can still be identified. Probably such compositional effects are not observed for trace element partitioning between pyroxenes and olivine or ortho- and clinopyroxene only for the reason that in normal spinel peridotites these minerals show much less variation in major element composition than their coexisting spinels.  相似文献   

19.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

20.
The Tibetan plateau is characterized by intense hydrothermal activity and abnormal enrichment of trace elements in geothermal waters. Hydrochemistry and B isotope samples from geothermal waters in Tibet were systematically measured to describe the fractionation mechanisms and provide constraints on potential B reservoirs. B concentrations range from 0.35 to 171.90 mg/L, and isotopic values vary between −16.57 ‰ and +0.52 ‰. Geothermal fields along the Indus-Yarlung Zangbo suture zone and N–S rifts are observed with high B concentrations and temperatures. The similar hydrochemical compositions of high-B geothermal waters with magmatic fluid and consistent modeling of B isotopic compositions with present δ11B values imply that the B in high-B geothermal waters is mainly contributed by magmatic sources, probably through magma degassing. In contrast, geothermal fields in other regions of the Lhasa block have relatively low B concentrations and temperatures. After considering the small fractionation factor and representative indicators of Na/Ca, Cl/HCO3, Na + K and Si, the conformity between modeling results and the isotopic compositions of host rocks suggests that the B in low-temperature geothermal fields is mainly sourced from host rocks. According to simulated results, the B in some shallow geothermal waters not only originated from mixing of cold groundwater with deep thermal waters, but it was also contributed by equilibration with marine sedimentary rocks with an estimated proportion of 10%. It was anticipated that this study would provide useful insight into the sources and fractionation of B as well as further understanding of the relationships between B-rich salt lakes and geothermal activities in the Tibetan plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号