首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mantle xenoliths included in Quaternary alkaline volcanics from the Manzaz-district (Central Hoggar) are proto-granular, anhydrous spinel lherzolites. Major and trace element analyses on bulk rocks and constituent mineral phases show that the primary compositions are widely overprinted by metasomatic processes. Trace element modelling of the metasomatised clinopyroxenes allows the inference that the metasomatic agents that enriched the lithospheric mantle were highly alkaline carbonate-rich melts such as nephelinites/melilitites (or as extreme silico-carbonatites). These metasomatic agents were characterized by a clear HIMU Sr–Nd–Pb isotopic signature, whereas there is no evidence of EM1 components recorded by the Hoggar Oligocene tholeiitic basalts. This can be interpreted as being due to replacement of the older cratonic lithospheric mantle, from which tholeiites generated, by asthenospheric upwelling dominated by the presence of an HIMU signature. Accordingly, this rejuvenated lithosphere (accreted asthenosphere without any EM influence), may represent an appropriate mantle section from which deep alkaline basic melts could have been generated and shallower mantle xenoliths sampled, respectively. The available data on lherzolite xenoliths and alkaline lavas (including He isotopes, Ra < 9) indicate that there is no requirement for a deep plume anchored in the lower mantle, and that sources in the upper mantle may satisfactorily account for all the geochemical/petrological/geophysical evidence that characterizes the Hoggar swell. Therefore the Hoggar volcanism, as well as other volcanic occurrences in the Saharan belt, are likely to be related to passive asthenospheric mantle uprising and decompression melting linked to tensional stresses in the lithosphere during Cenozoic reactivation and rifting of the Pan–African basement. This can be considered a far-field foreland reaction of the Africa–Europe collisional system since the Eocene.  相似文献   

2.
The lavas produced by the Timanfaya eruption of 1730–1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/86Sr (around 0.703) and 143Nd/144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/144Nd ratios show crustal values (0.13–0.16) in the ultramafic xenoliths and mantle values (0.18–0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange (87Sr/86Sr and 143Nd/144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.  相似文献   

3.
Petrography, mineral and host-rock chemistry of the mantle-derived spinel lherzolite xenoliths in the nephelinites of Kutch, a late variant of the Deccan Traps province, India, are reported. The xenoliths register equilibration temperatures between 920° ± 70°C and 1060° ± 50°C and an ascent time between 19 and 168 days. Representing a palaeogeotherm of minimum heat flow between 60 and 70 mW/m2, the xenoliths possibly came from the oceanic lithosphere under the Deccan field, following the Cretaceous-Eocene fragmentation of Gondwanaland.  相似文献   

4.
We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as “The Thumb”, located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ∼150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ∼150 km (T  1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ∼138 ppm wt H2O, and the water concentration at the planar defects could reach up to ∼1000 ppm wt H2O. However, the formation of antigorite in grain boundaries was found to be the primary hydration mechanism for harzburgitic samples originating from the subcontinental mantle (for hydration, T  600 °C). Additionally, the formation of antigorite in lherzolites could be found in annealed cracks. From these observations, we conclude that hydration induces multi-stage water enrichment of the mantle wedge by a process that is dominated by the growth and movement of ubiquitous cracks, which acts as planar defects. Cracks in the mantle seem to be the an important feature in both the water cycle of the subduction zone and the formation of the continental lithosphere.  相似文献   

5.
Pb and Sr isotopic ratios have been determined for tholeiitic shield-building, alkalic cap, and post-erosional stage lavas from Haleakala Crater. Pb isotopic compositions of the tholeiites overlap those of the alkalic cap lavas, although87Sr/86Sr ratios of these two suites are distinct. Alkalic cap and post-erosional lavas appear to be indistinguishable on the basis of Sr and Pb isotopic composition.Sr and Pb isotopic ratios of Haleakala post-shield-building lavas are positively correlated. Such a trend is previously undocumented for any suite of Hawaiian lavas and contrasts with the general negative correlation observed for data from Hawaiian tholeiites. These relations are consistent with a three-component petrogenetic mixing model. Specifically, it is proposed that magma batches at individual Hawaiian volcanoes formed by: (1) mixing of melts generated from mantle plumes containing two isotopically distinct mantle components (primitive vs. enriched), and (2) subsequent variable degrees of interaction between these plume melts and a third (MORB signature) mantle reservoir prior to their emplacement in a crustal magma chamber. These observations and inferences provide new constraints on physical models of Hawaiian magmatism. Based on observed temporal isotopic variations of Haleakala lavas, it is suggested that the ratio of enriched: primitive mantle components in the Hawaiian plume source decreases during the waning stages of alkalic volcanism. Over the same time interval, both decreasing melt production and protracted residence of ascending melts within the upper mantle contribute to a systematic increase in the ratio of depleted vs. plume component.  相似文献   

6.
In order to better understand the nature and formation of oceanic lithosphere beneath the Early Cretaceous Ontong Java Plateau, Re–Os isotopes have been analysed in a suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, thermobarometric and petrological evidence from previous studies reveal that the xenoliths represent virtually the entire thickness of the southern part of subplateau lithospheric mantle (< 120 km). This study demonstrates that vertical Os isotopic variations correlate with compositional variations in a stratified lithosphere. The shallowest plateau lithosphere (< 85 km) is dominated by fertile lherzolites showing a restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~ 160 Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle (~ 95–120 km) is enriched in refractory harzburgites with highly unradiogenic 187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages of 0.9–1.7 Ga. Although the whole range of Os isotope compositions of Malaita peridotites is within the variations seen in modern abyssal peridotites, the contrasting isotopic compositions of shallow and deep plateau lithosphere suggest their derivation from different mantle reservoirs. We propose that the subplateau lithosphere forms a genetically unrelated two-layered structure, comprising shallower, typical oceanic lithosphere underpinned by deeper impinged material, which included a component of recycled Proterozoic lithosphere. The impingement of residual but chemically heterogeneous mantle, mechanically coupled to the recently formed, thin lithosphere, may have a bearing on the anomalous initial uplift and late subsidence history of the seismically anomalous plateau root.  相似文献   

7.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

8.
Melt generation and extraction along the Hawaiian volcanic chain should be largely controlled by the thermal structure of the Hawaiian swell and the heat source underneath it. We simulate numerically the time- and space-dependent evolution of Hawaiian volcanism in the framework of thermal evolution of the Hawaiian swell, constrained by residual topography, geoid anomalies, and anomalous heat flow along the Hawaiian volcanic chain. The transient heat transfer problem with melting relationships and variable boundary conditions is solved in cylindrical coordinates using a finite difference method. The model requires the lithosphere to be thinned mechanically by mantle plume flow. Melting starts quickly near the base of the plate when the hotspot is encountered. Thermal perturbation and partial melting are largely concentrated in the region where the original lithosphere is thinned and replaced by the mantle flow. The pre-shield Loihi alkalic and tholeiitic basalts are from similar sources, which are a mixture of at least three mantle components: the mantle plume, asthenosphere, and the lower lithosphere. The degree of partial melting averages 10–20%, with a peak value of 30% near the plume center. As a result of continuous compaction, melts are extracted from an active partial melting zone of about 10–20 km thickness, which moves upwards and laterally as the heating and compaction proceed. The rate of melt extraction from the swell increases rapidly to a maximum value of 1 × 105 km3/m.y. over the center of the heat source, corresponding to eruption of large amounts of tholeiitic lavas during the shield-building stage. This volume rate is adequate to account for the observed thickness of the Hawaiian volcanic ridge. Melts from direct partial melting of the mantle plume at depth may be important or even dominant at this stage, although the amount is uncertain. At the waning stage, mixing of melts from the mantle flow pattern with those from low-degree partial melting of the lithosphere may produce postshield alkalic basalts. After the plate moves off the heat source, continuous conductive heating can cause very low degree partial melting (less than 1%) of the lithosphere at shallow depths for about one million years. This process may be responsible for producing post-erosional alkalic basalts. The extraction time for removing such small amount of melts is about 0.4–2 m.y., similar to the time gap between the eruption of post-erosional alkalic lavas and the shield-building stage. Our results show that multi-stage Hawaiian volcanism and the general geochemical characteristics of Hawaiian basalts can be explained by a model of plume-plate interaction.  相似文献   

9.
New geochemical and isotopic data are presented from the oldest part of the Cumbre Vieja volcano, La Palma (Canary Islands), located near the assumed emergence of the Canary mantle plume. The volcanics comprise a suite dominated by basanite flows with subordinate amounts of phono-tephrite, tephri-phonolite and phonolite flows and intrusives. Two compositionally different basanite groups have been identified, both with HIMU (high-μ)-type incompatible trace element characteristics: Primitive high-MgO basanites (10.7–12.1% MgO), found only at the base of a stratigraphic profile near Fuencaliente on the south coast, and intermediate-MgO basanites (6.0–7.3% MgO), exposed in the upper part of the profile and widespread on the east coast of La Palma. The high-MgO basanites are interpreted as near-primary mantle melts (primary composition 14–15% MgO) derived by progressive melting (2.9% to 4.5%) of a common lithospheric mantle source. Model calculations indicate that it is not possible to generate the intermediate-MgO basanites from the high-MgO group by crystal fractionation of observed phenocrysts. Relative to intermediate-MgO basanites, the high-MgO flows have lower concentrations of LIL and HFS elements, except for Ti, which is markedly enriched in the primitive rocks (3.7–4.7% TiO2 vs 3.4–3.9% TiO2). Fuencaliente volcanics display limited temporal isotopic variations suggested to be a result of mixing of melts originating from the rising plume and the metazomatized lithospheric mantle. 87Sr / 86Sr and 143Nd / 144Nd ratios range 0.70305–0.70311 and 0.51285–0.51291, respectively, while the corresponding ranges in Pb-isotope ratios are 206Pb / 204Pb = 19.46–19.64, 207Pb / 204Pb = 15.55–15.61, and 208Pb / 204Pb = 39.16–39.53. The overall variation of the Cumbre Vieja isotopic data can be accounted for by mixtures of three mantle components in the proportions 72–79% plume source (LVC = low velocity component), 9–16% depleted mantle (DM) and up to 12% enriched mantle (EMI). Negative Δ7 / 4 Pb (− 0.6 to − 5.4) in the Cumbre Vieja volcanics suggest derivation from a young HIMU mantle source. The relative abundance of plume source material increase in younger rocks in the Fuencaliente section, suggesting waning plume–lithosphere interaction during the emplacement of this part of the Cumbre Vieja volcano. The high-MgO volcanics define regular and systematic geochemical trends, interpreted as partial melting trends, when plotted against abundances of highly incompatible elements (P, Ce). Evaluation of minor and trace element variation in consecutive melts suggests control by residual amphibole, phlogopite, garnet and a Ti-bearing phase, possibly ilmenite. The melting mode changed gradually, allowing increasing input from residual phlogopite during partial melting. The residual mineralogy constrains the source region of the high-MgO basanites to the lowermost oceanic lithospheric mantle, presumably around 100 km depths.  相似文献   

10.
Abundant dunite and harzbugite xenoliths are preserved in Early Cretaceous high-Mg# [63–67, where Mg# = molar 100 × Mg/(Mg + Fetot)] diorite intrusions from western Shandong in the North China Craton (NCC). Dunite and some harzburgite xenoliths typically preserve areas of orthopyroxenite (sometimes accompanied by phlogopite) either as veins or as zones surrounding chromite grains. Harzburgite is chiefly composed of olivine, orthopyroxene, minor clinopyroxene and chromian-spinel. High Mg#'s (averaging 91.4) and depletions in Al2O3 and CaO (averaging 0.52 wt.% and 0.29 wt.%, respectively) in harzburgite and dunite xenoliths suggest that they are residues formed by large degrees of polybaric melting. However, olivines and orthopyroxenes from dunite xenoliths spatially associated with orthopyroxenite display lower Mg#'s (i.e., 82–87 and 83–89, respectively), suggesting that an adakitic melt–peridotite reaction has taken place. This is consistent with the production of veined orthopyroxene or orthopyroxene + phlogopite in dunite and some harzburgite xenoliths in response to the introduction of adakitic melt into the previously depleted lithospheric mantle (i.e., harzburgite and dunite xenoliths). The presence of orthopyroxene in veins or as a zones surrounding chromite in peridotite xenoliths is thought to be representative of adakitic melt metasomatism. The dunite and harzbugite xenoliths are relatively rich in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), poor in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and lack Eu anomalies on chondrite normalized trace element diagrams. The initial 87Sr/86Sr ratios and εNd(t) values for the xenoliths range from 0.7058 to 0.7212 and + 0.18 to ? 19.59, respectively. Taken together, these features, combined with the strong depletion in HFSE and the existence of Archean inherited zircons in the host rocks, suggest that the adakitic melt was derived from the partial melting of early Mesozoic delaminated lower continental crust. The interaction of the adakitic melt with peridotite is responsible for the high-Mg# character of the early Cretaceous diorites in western Shandong.  相似文献   

11.
We investigate the mantle dynamics beneath the North China Craton (NCC) and surrounding regions based on a synthesis of recent P-wave mantle tomographic data down to depths of 600–800 km and their correlation with the surface geological features, with particular reference to the Paleoproterozoic tectonic events associated with the incorporation of the NCC within the Columbia supercontinent amalgam. From the tomographic images, we identify a hot corridor in the mantle transition zone beneath the central region of the Western Block of the NCC sandwiched between two cold corridors. This scenario is similar to the donut-shaped high-velocity anomaly surrounding a region of low-velocity anomaly in the lowermost mantle under the Pacific and suggests that the cold regions might represent slab graveyards which provide the fuel for the plumes rising from the center. A tomographic transect along the collisional suture of the NCC with the Columbia supercontinent, covering the Yinshan-Ordos Blocks in the Western Block through the Central Orogenic Belt and into the Eastern Block of the NCC reveals a ca. 250 km thick lithospheric keel below the Ordos Block defined by a prominent high-velocity anomaly. We identify slab break-off and asthenospheric upwelling in this region and suggest that this process probably initiated the thermal and material erosion of the tectosphere beneath the Eastern Block from the Paleoproterozoic, which was further intensified during the Mesozoic when a substantial part of the sub-continental mantle lithosphere was lost. We visualize heat input from asthenosphere and interaction between asthenosphere and overlying carbonated tectosphere releasing CO2-rich fluids for the preservation of ultra-high temperature (ca. 1000 °C) metamorphic rocks enriched in CO2 as well as high-pressure mafic granulites as a paired suite in this region. We also identify a hot swell of the asthenosphere rooted to more than 200 km depth and reaching up to the shallow mantle in the tomographic section along 35°N latitude at a depth of 800 km. This zone represents a cross-section through the southern part of the NCC. The surface distribution of Paleoproterozoic Xiong’er lavas and mafic dykes in this region would indicate that this region might have evidenced similar upwellings in the past. Our study has important implications in understanding the evolution of the NCC and suggests that the extensive modification of the mantle architecture and lithospheric structure beneath one of the fundamental Precambrian nuclei of Asia had a prolonged history probably dating from the Paleoproterozoic suturing of the NCC within the Columbia supercontinent amalgam.  相似文献   

12.
Late Cretaceous (66.2 ± 0.5 Ma amphibole and 66.7 ± 0.2 Ma phlogopite 40Ar/39Ar ages) nephelinitic volcanic rocks from Godzilla Seamount in the eastern North Atlantic (34°N latitude) have trace element and Sr–Nd–Pb–Hf-isotope compositions similar to the Enriched Mantle I (EM-I) endmember, except for their low 207Pb/204Pb relative to 206Pb/204Pb ratios (206Pb/204Pbin = 17.7, 207Pb/204Pbin = 15.34) plotting below the Northern Hemisphere Reference Line on the uranogenic Pb isotope diagram. O isotope data on amphibole separates are mantle-like (δ18O = 5.6–5.8‰). Age and location of the isolated Godzilla Seamount, however, preclude it from being derived from the Madeira or Canary hotspots, making a lower-mantle origin unlikely. Therefore we propose derivation from a shallow (lithospheric/asthenospheric) melting anomaly. As observed in mid-ocean-ridge and ocean-island basalts, there is a systematic decrease of 207Pb/204Pb ratios (and Δ7/4) in the individual EM-I endmember type localities towards northern latitudes with Godzilla lying on the extension of this trend. This trend is mirrored in ultra-potassic volcanic rocks such as lamproites and kimberlites, which reflect the composition of enriched subcontinental lithospheric mantle. Therefore, a global pattern in 207Pb/204Pb ratios and Δ7/4 is suggested. The geochemical composition of EM-I endmember type localities, including Godzilla lavas, and the enriched (DUPAL) anomaly in the southern hemisphere could reflect derivation from ancient, metasomatized subcontinental lithospheric mantle. We propose a two-stage model to explain the trace element and isotopic composition of the EM-I mantle endmember localities worldwide: 1) during the early history of the Earth, subcontinental lithosphere was metasomatized by melts from subducted slabs along convergent margins generating high μ (238U/204Pb) sources, and 2) as the Earth cooled, hydrous fluids replaced hydrous melts as the main slab component metasomatizing the subcontinental lithospheric mantle (generating EM-I sources with lower μ). In accordance with this model, the global variations in 207Pb/204Pb ratios and Δ7/4 could reflect geographic differences in μ and/or the age at which the transition from stages 1 to 2 took place in the Archaean lithosphere. The model would require a re-definition of the EM-I endmember to low 206Pb/204Pb, high 208Pb/204Pb (positive Δ8/4) but variable 207Pb/204Pb (positive and negative Δ7/4).  相似文献   

13.
《Journal of Geodynamics》2008,45(3-5):149-159
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   

14.
Boa Vista, the easternmost island in the Cape Verde archipelago, consists of volcanic products, minor intrusions and a thin partial sedimentary cover. The first 15 age results from 40Ar/39Ar incremental heating analysis of groundmass separates from volcanic and plutonic rocks from Boa Vista are presented. The combination of age results and field observations demonstrates that the volcanic activity that formed the island occurred in three main stages: (1) > 16 Ma, (2) 15–12.5 Ma and (3) 9.5–4.5 Ma. The first stage, restricted to the north eastern part of the island, is dominated by ankaramitic lavas. The second stage, consisting of evolved lavas of phonolitic–trachytic compositions and nepheline syenites, makes up large central parts of the island. The large volume of evolved rocks and the extended eruption period of several Ma make stage 2 in Boa Vista unique to Cape Verde. Mainly basanites and nephelinites were erupted during the third stage, initially dominated by eruption of subaerial mafic lavas around 9 Ma. Pillow lavas are erupted around 7 Ma whereupon dominantly subaerial mafic lavas were erupted. Stage 3 saw volcanism in many centres distributed mainly along the present coastline and with activity partly overlapping in time. The volcanic evolution of Boa Vista constrains the initiation of volcanic activity in the Cape Verde archipelago to the eastern islands. Major and trace element geochemistry of 160 volcanic and plutonic rocks representing the entire exposed chronological sequence on Boa Vista is presented, revealing an extremely well developed Daly Gap. Only a little was modified from the mafic magmas that rose in small batches from the mantle. Compositional variation distinguishes each volcanic complex and was to a large extent present in the mantle melts. The highly evolved stage 2 phonolites and trachytes are related through the fractional crystallization of three compositionally distinct magmas. Two of these may have been derived by crystal fractionation of primitive Boa Vista melts, whereas the third was not.  相似文献   

15.
We present fundamental-mode Rayleigh-wave azimuthally anisotropic phase velocity maps obtained for the Great Basin region at periods between 16 s and 102 s. These maps offer the first depth constraints on the origin of the semi-circular shear-wave splitting pattern observed in central Nevada, around a weak azimuthal anisotropy zone. A variety of explanations have been proposed to explain this signal, including an upwelling, toroidal mantle flow around a slab, lithospheric drip, and a megadetachment, but no consensus has been reached. Our phase velocity study helps constrain the three-dimensional anisotropic structure of the upper mantle in this region and contributes to a better understanding of the deformation mechanisms taking place beneath the western United States. The dispersion measurements were made using data from the USArray Transportable Array. At periods of 16 s and 18 s, which mostly sample the crust, we find a region of low anisotropy in central Nevada coinciding with locally reduced phase velocities, and surrounded by a semi-circular pattern of fast seismic directions. Away from central Nevada the fast directions are ~ N–S in the eastern Great Basin, NW–SE in the Walker Lane region, and they transition from E–W to N–S in the northwestern Great Basin. Our short-period phase velocity maps, combined with recent crustal receiver function results, are consistent with the presence of a semi-circular anisotropy signal in the lithosphere in the vicinity of a locally thick crust. At longer periods (28–102 s), which sample the uppermost mantle, isotropic phase velocities are significantly reduced across the study region, and fast directions are more uniform with an ~ E–W fast axis. The transition in phase velocities and anisotropy can be attributed to the lithosphere–asthenosphere boundary at depths of ~ 60 km. We interpret the fast seismic directions observed at longer periods in terms of present-day asthenospheric flow-driven deformation, possibly related to a combination of Juan de Fuca slab rollback and eastward-driven mantle flow from the Pacific asthenosphere. Our results also provide context to regional SKS splitting observations. We find that our short-period phase velocity anisotropy can only explain ~ 30% of the SKS splitting times, despite similar patterns in fast directions. This implies that the origin of the regional shear-wave splitting signal is complex and must also have a significant sublithospheric component.  相似文献   

16.
Common and radiogenic Pb isotopic compositions of plagioclase and anti-perthitic feldspars from granulite-facies lower crustal xenoliths from the Labait Volcano on the eastern margin of the Tanzanian Craton have been measured via laser ablation MC-ICP-MS. Common Pb in plagioclase and a single stage Pb evolution model indicate that the lower crust of the Tanzanian Craton was extracted from mantle having a 238U/204Pb of 8.1 ± 0.3 and a 232Th/238U of 4.3 ± 0.1 at 2.71 ± 0.09 Ga (all uncertainties are 2σ). Since 2.4 Ga, some orthoclase domains within anti-perthites have evolved with a maximum 238U/204Pb of 6 and 232Th/238U of 4.3. The spread in Pb isotopic composition in the anti-perthitic feldspars yields single crystal Pb–Pb isochrons of ~ 2.4 Ga, within uncertainty of U–Pb zircon ages from the same sample suite. The Pb isotopic heterogeneities imply that these granulites resided at temperatures < 600 °C in the lower crust of the Tanzanian Craton from ca. 2.4 Ga to the present. In concert with the chemistry of surface samples, mantle xenoliths, and lower crustal xenoliths, our data imply that the cratonic lithosphere in Tanzania formed ca. ~ 2.7 Ga, in a convergent margin setting, and has remained undisturbed since 2.7 Ga.  相似文献   

17.
We estimate average compositions of near-primary, ‘reference’ ocean island basalts (OIBs) for 120 volcanic centers from 31 major island groups and constrain the depth of lithosphere–asthenosphere boundary (LAB) at the time of volcanism and the possible depth of melt–mantle equilibration based on recently calibrated melt silica activity barometer. The LAB depth versus fractionation corrected OIB compositions (lava compositions, X, corrected to Mg# 73, XOIB#73, i.e., magmas in equilibrium with Fo90, if olivine is present in the mantle source) show an increased major element compositional variability with increasing LAB depths. OIBs erupted on lithospheres < 40 km thick approach the compositions (e.g. SiO2#73, TiO2#73, [CaO/Al2O3]#73) of primitive ridge basalts and are influenced strongly by depth and extent of shallow melting. However, XOIB#73 on thicker lithospheres cannot be explained by melt–mantle equilibration as shallow as LAB. Melt generation from a somewhat deeper (up to 50 km deeper than the LAB) peridotite source can explain the OIB major element chemistry on lithospheres ≤ 70 km. However, deeper melting of volatile-free, fertile peridotite is not sufficient to explain the end member primary OIBs on ≥ 70 km thick lithospheres. Comparison between XOIB#73 and experimental partial melts of fertile peridotite indicates that at least two additional melt components need to be derived from OIB source regions. The first component, similar to that identified in HIMU lavas, is characterized by low SiO2#73, Al2O3#73, [Na2O/TiO2]#73, and high FeO?#73, CaO#73, [CaO/Al2O3]#73. The second component, similar to that found in Hawaiian Koolau lavas, is characterized by high SiO2#73, moderately high FeO?#73, and low CaO#73 and Al2O3#73. These two components are not evenly sampled by all the islands, suggesting a heterogeneous distribution of mantle components that generate them. We suggest that carbonated eclogite and volatile-free, silica-excess eclogite are the two most likely candidates, which in conjunction with fertile mantle peridotite, give rise to the two primitive OIB end members.  相似文献   

18.
In this work we have modeled the thermal structure of the lithosphere of the Spanish Central System and the Tajo Basin, and their implications for lithospheric strength. For this, we have used refined heat-producing elements (HPE) values to obtain new estimates of heat production rates in the Spanish Central System and Tajo Basin areas, which have been used joined to the relation between topography and thermal structure of the lithosphere to calculate the best-fit surface heat flows in the study area. Moreover, we have implemented a temperature-dependent thermal conductivity (appropriate for olivine) for the lithospheric mantle to improve the calculations of temperature profiles in the mantle. The geotherms so obtained, together with the implementation of a new rheological law for the upper lithospheric mantle, have been used to calculate refined estimations of the strength and effective elastic thickness of the lithosphere. We have obtained surface heat flow values of 84 mW m−2 and ∼82 mW m−2 for the Spanish Central System and the Tajo Basin, respectively. The thermal state of the lithosphere affects mantle temperatures, and hence may be playing an important role in the uplift and maintenance of the Spanish Central System.  相似文献   

19.
《Journal of Geodynamics》2011,51(5):424-440
This study presents geochemical and fabric analysis of coarse-grained, porphyroclastic and mylonitic spinel peridotite xenoliths derived from the shallow subcontinental lithospheric mantle of Jeju Island (South Korea). Fabric analysis of olivines in the studied peridotites shows activation of the high temperature (0 1 0)[1 0 0] slip system; however, in the porphyroclastic and mylonitic peridotites, activation of (0 k l)[1 0 0] slip system results in a weaker fabric. Formation of porphyroclastic and mylonitic fabrics are thought to form in a shear-dominated environment. The results of the trace element analysis reveal that the smaller the grain size and weaker the fabric, the more enriched in LREE and HFSE are the peridotites, which indicates a strong relationship between metasomatic agents and mantle shear zones.  相似文献   

20.
Os–Hf–Sr–Nd isotopes and PGE were determined in peridotite xenoliths carried to the surface by Quaternary alkali basaltic magmas in the Tokinsky Stanovik Range on the Aldan shield. These data constrain the timing and nature of partial melting and metasomatism in the lithospheric mantle beneath SE Siberian craton. The xenoliths range from the rare fertile spinel lherzolites to the more abundant, strongly metasomatised olivine-rich (70–84%) rocks. Hf–Sr–Nd isotope compositions of the xenoliths are mainly within the fields of oceanic basalts. Most metasomatised xenoliths have lower 143Nd / 144Nd and 176Hf / 177Hf and higher 87Sr / 86Sr than the host basalts indicating that the metasomatism is older and has distinct sources. A few xenoliths have elevated 176Hf / 177Hf (up to 0.2838) and plot above the Hf–Nd mantle array defined by oceanic basalts.187Os / 188Os in the poorly metasomatised, fertile to moderately refractory (Al2O3  1.6%) Tok peridotites range from 0.1156 to 0.1282, with oldest rhenium depletion ages being about 2 Ga. The 187Os / 188Os in these rocks show good correlations with partial melting indices (e.g. Al2O3, modal cpx); the intercept of the Al–187Os / 188Os correlation with lowest Al2O3 estimates for melting residues (∼0.3–0.5%) has a 187Os / 188Os of ∼0.109 suggesting that these peridotites may have experienced melt extraction as early as 2.8 Gy ago. 187Os / 188Os in the strongly metasomatised, olivine-rich xenoliths (0.6–1.3% Al2O3) ranges from 0.1164 to 0.1275 and shows no apparent links to modal or chemical compositions. Convex-upward REE patterns and high abundances of heavy to middle REE in these refractory rocks indicate equilibration with evolved silicate melts at high melt / rock ratios, which may have also variably elevated their 187Os / 188Os. This inference is supported by enrichments in Pd and Pt on chondrite-normalised PGE abundance patterns in some of the rocks. The melt extraction ages for the Tok suite of 2.0 to 2.8 Ga are younger than oldest Os ages reported for central Siberian craton, but they must be considered minimum estimates because of the extensive metasomatism of the most refractory Tok peridotites. This metasomatism could have occurred in the late Mesozoic to early Cenozoic when the Tok region was close to the subduction-related Pacific margin of Siberia and experienced large-scale tectonic and magmatic activity. This study indicates that metasomatic effects on the Re–Os system in the shallow lithospheric mantle can be dramatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号